2126

AD A 140996

NO. _____12909

MILITARY ADAPTATION OF COMMERCIAL ITEMS (MACI)

LABORATORY EVALUATION OF THE CODE E-436 ENGINE

February 1984

Roy J. G. Rimpela
US Army Tank-Automotive Command
ATTN: DRSTA-RGRD
Warren, MI 48090

by _

Approved for Public Release: Distribution Unlimited

20040108058

U.S. ARMY TANK-AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER Warren, Michigan 48090

Best Available Copy

NOTICES

This report is not to be construed as an official Department of the Army position.

Mention of any trade names or manufacturers in this report shall not be construed as an official indorsement or approval of such products or companies by the US Government.

Destroy this report when no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER 2. GOVT ACCESSION NO. 12909	3. RECIPIENT'S CATALOG NUMBER						
4. TITLE (and Substite) Military Adaptation of Commercial Items: Laboratory Evaluation of the Code E-436	5. TYPE OF REPORT & PERIOD COVERED						
Engine	6. PERFORMING ORG. REPORT NUMBER						
7. AUTHOR(a) Roy J. G. Rimpela	8. CONTRACT OR GRANT NUMBER(*)						
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Tank-Automotive Command R&D Center, DRSTA-RGRD Warren, MI 48090	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE Feb 84						
	13. NUMBER OF PAGES						
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified						
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Distribution Unlimited							
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)						
18. SUPPLEMENTARY NOTES	·						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Diesel Engine Engine Testing NATO Standardization Engine Test							
The project determined the military adaptability of the Code E-436 engine through laboratory testing and evaluation. The engine was installed in a dynamometer test cell at US Army Tank-Automotive Command (TACOM) and conventional dynamometer testing procedures were used to determine basic engine characteristics. The characteristics determined were full load performance, fuel economy at full load and part load, engine oil consumption, and engine heat rejection.							

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

During pre-endurance testing, the Code E-436 engine produced 378 observed kW (506.4 BHP) at full load, at rated speed of 2600 RPM. The maximum torque during full load operation was 1439 Nm (1061 lb-ft) at 2400 RPM. Minimum brake specific fuel consumption at full load occurred at 2200 RPM and was 217 g/KWH (0.356 lb/BHP-HR).

After the NATO Endurance Test the engine produced 375.1 observed kW (503.0 BHP) at full load and rated speed. The maximum torque was $1423.8\,\mathrm{Nm}$ (1050 lb-ft) at 2400 RPM.

The total lube oil consumption during the 400-hour NATO endurance was 19.7 kgs (43.4 lbs).

Following the endurance test visual and dimensional inspection of the engine revealed all major engine parts to be in excellent condition except for pistons. Five out of eight pistons developed cracks in the pin bores.

Though the engine completed the endurance test (400 hours) and was operated for a total of 582 hours, the engine is considered as having failed the 400-hour NATO test due to piston failure.

PREFACE

This test program was supervised and conducted by the US Army Tank-Automotive Command, R&D Center, Propulsion Systems Division, in test cell no. 6 of Bldg. 212. The test was started on 17 Jan 83 and was completed on 28 Jul 83.

THIS PAGE LEFT INTENTIONALLY BLANK

TABLE OF CONTENTS

Section	n .								Page
1.0.	INTRODUCTION	•	•		•				11
2.0.	OBJECTIVE	•	•		•		•	•	11
3.0.	CONCLUSIONS	•	•	•	•	•	•		11
4.0.	RECOMMENDATIONS	•	•	•				•	11
5.0.	ENGINE SPECIFICATIONS	•		•		•		٥	11
5.1.	Test Material	٠	•	•	•	٠	•	٥	
	Engine								
	Lubricating Oil								
	Fuel								
5.2.	Test Equipment	•	•	•	•			•	12
5.3.	Test Procedure	•		•	•	•		•	12
5.3.1.	Propulsion Systems Division Test Program		•	•	•	•	۰	•	12
5.3.2.	NATO Test Specification	•	•	•	•	•	•	٠	12
6.0.	RESULTS AND DISCUSSION				•			٠	12
6.1.	Pre-endurance Test Performance Evaluation			•					12
6.1.1.	Full-load Performance					•		•	12
	Part-load performance								
	Performance and Endurance Evaluation During NATO Test .								
	Full-load Performance After 100 Hours								
	Full-load Performance After 200 Hours								
	Full-load Performance After 300 Hours								
	Full-load Performance After 400 Hours								
	Endurance Test (400 Hours)								
6.2.6.	Visual and Dimensional Inspection	•		•	-	•	•	•	13.
6.2.7.	Engine Oil Consumption	•	•	•	•	•	•	•	14
6.2.8.	Oil Spectrographic Analysis	•		•					14
	Full-load Heat Rejection								
6.2.10	Smoke and Airflow Readings	•	•	•	•	•	•	•	14
6.2.11	Fuel Map	٠	•	•	•	•	۰	•	14
	Performance Data Sheets Required by NATO Specifications								14
	er or returned bath bucker wedaring of wire plecitionering	•	•	•	•	•	•		_ →

THIS PAGE LEFT BLANK INTENTIONALLY

LIST OF TABLES

Table	Title	Page
1	Full-load Engine Performance. 0 Test Hours	18
2	Full-load Engine Performance. 100 Test Hours	21
3	Full-load Engine Performance. 200 Test Hours	24
4	Full-load Engine Performance. 300 Test Hours	27
5	Full-load Engine Performance. 400 Test Hours	30
6	Engine Oil Consumption	31
7	Full-load Bosch-Smoke Readings	35

THIS PAGE LEFT BLANK INTENTIONALLY

LIST OF ILLUSTRATIONS (PERFORMANCE GRAPHS)

No.	Title			Page
1	Full-load Engine Performance.	O Test Hours. (Metric Units)	•	16
2	Full-load Engine Performance.	O Test Hours. (English Units)	•	17
3	Full-load Engine Performance.	100 Test Hours. (Metric Units)	•	19
4	Full-load Engine Performance.	100 Test Hours. (English Units).	•	20
5	Full-load Engine Performance.	200 Test Hours. (Metric Units)	•	22
6	Full-load Engine Performance.	200 Test Hours. (English Units).	•	23
7	Full-load Engine Performance.	300 Test Hours. (Metric Units)	•	25
8	Full-load Engine Performance.	300 Test Hours. (English Units).	•	26
9	Full-load Engine Performance.	400 Test Hours. (Metric Units)	•	28
10	Full-load Engine Performance.	400 Test Hours. (English Units).	•	29
11	Full-load Heat Rejection Chara	cteristics. (Metric Units)	•	32
12	Full-load Heat Rejection Chara	cteristics. (English Units)	•	33
13	Full-load Inlet Airflow. (Met	ric Units)	•	34
14	Fuel Map. (Metric and English	Únits)	•	36

THIS PAGE LEFT BLANK INTENTIONALLY

1.0. INTRODUCTION

TACOM started an engineering program in 1975 at the Propulsion Systems Laboratory for Military Adaptation of Commercial Items. The program's objectives are selection and simulated field test evaluation of current advanced technology engines to replace or update military engines in current vehicle programs.

2.0. OBJECTIVE

The test objective is to determine full- and part-load performance characteristics and engine durability through the standard 400-hour NATO Test program (AEP-5 dated June 1980) using fuel with high sulfur content (1.05 percent).

3.0. CONCLUSIONS

The engine performed satisfactorily over the full range of test speeds, both at full and part loads, and throughout the 400-hour endurance test. The engine also met manufacturer's listed performance values of power, torque, fuel economy, and heat rejection. The engine was operated for a total of 582 hours.

Although the engine performed satisfactorily and met the performance requirements, it did not meet durability requirements and therefore failed to pass the 400-hour NATO Test. Failure to pass the NATO Test was based on condition of the pistons at endurance test conclusion; five of the eight pistons had developed serious cracks in piston pin bores.

4.0. RECOMMENDATIONS

Further piston durabilty improvements would appear obtainable through the following:

- o Material improvement;
- o Change of fabrication methods;
- o Improved piston cooling;
- Piston reinforcement or addition of another reinforcement material (insert);
- o Heat bridges added or other stress relieving methods applied.

5.0. ENGINE SPECIFICATIONS

5.1. Test Material.

5.1.1. Engine

o Code: E-436

o Model: VTA-903T

- o Maximum Output @ 500 ft and 85°F (152m & 29°C) BHP (kW): 500 (373)
- o Speed @ Maximum Output RPM: 2,600
- o Type: Compression Ign; 4 cycle; 900 Vee; 8 Cylinder
- o Aspiration: Turbocharged & Aftercooled
- o Bore-in (mm) x Stroke-in. (mm): 5.5 (140) x 4.75 (121)
- o Displacement in³ (litres): 903 (14.8)
- o Compression Ration: 15.5:1
- o Dry Weight (with Standard Accessories) 1b, (kg): 2,450 (1,110)
- o Piston Cooling: Drilled Rods
- 5.1.2. Lubricating Oil: Grade 30, MIL-L-2104-C
 Referee Grade: 30
 Imperial Oil Co.
 (APPENDIX E)
- 5.1.3. Fuel: MIL-F-46162B (ME) (14 Aug 81)
 0.95-1.05 percent Sulfur by Weight (APPENDIX B)
- 5.2. Test Equipment. Controls equipment, and associated instrumentation of cell no. 2, Building 212 TACOM.
- 5.3. Test Procedure.
- 5.3.1. Propulsion Systems Division Test Program: Engine Operating Limits and Adjustments. (APPENDIX A)
- 5.3.2. NATO Test Specification: Allied Engineer Publication (AEP-5) June 1980, NATO Standard Engine Laboratory Test for Gas Turbine Engines and Diesel and Gasoline Engines. (APPENDIX D)
- 6.0. RESULTS AND DISCUSSION
- 6.1. Pre-endurance Test Performance Evaluation.
- 6.1.1. Full-load Performance. All data are presented as observed without corrections. The engine developed 378 observed kW (506.4 BHP) at its rated speed of 2,600 RPM. Peak torque was 1,439 N-m. (1,061 lb-ft) at 2,400 RPM. Performance details are presented in Figures 1 and 2 and Table 1.
- 6.1.2. Part-load Peformance. The minimum observed brake specific fuel consumption was 215 g/kW-hr (0.354 lb/HP-hr) at 1,900 RPM, at 85 percent load.
- 6.2. Performance and Endurance Evaluation During NATO Test.
- 6.2.1. Full-load Performance After 100 Hours. The engine developed 377.2 kW (505.9 BHP) at 2,600 RPM. The maximum torque occurred at 2,400 RPM and was 1,443

- N-m. (1,064 lb-ft). Performance details are presented in Figures 3 and 4 and Table 2.
- 6.2.2. Full-load Performance After 200 Hours. The engine developed 377.2 kW (505.9 BHP) at 2,600 RPM. The maximum torque occurred at 2,400 RPM and was 1,441.4 N-m. (1063 lb-ft). Peformance details are presented in Figures 5 and 6 and Table 3.
- 6.2.3. Full-load Performance After 300 Hours. The engine developed 376.6 kW (505 BHP) at 2,600 RPM. The maximum torque occurred at 2,400 RPM and was 1,430.6 N-m. (1055 lb-ft). Performance details are presented in Figures 7 and 8 and Table 4.
- 6.2.4. Full-load Performance After 400 Hours. The engine developed 375.1 kW (503 BHP) at 2,600 RPM. The maximum torque value was 1,423.8 N-m. (1050 lb-ft) at 2,400 RPM. Performance details are presented in Figures 9 and 10 and Table 5.
- 6.2.5. Endurance Test (400 Hours). Although the engine completed the endurance test (400 hours) and was operated for a total of 582 hours, the engine failed the NATO Test.
- 6.2.6. Visual and Dimensional Inspection of Major Engine Components Following Endurance. At completion of the test, the engine was completely disassembled, and cleaned and all critical parts were visually examined, dimensionally checked, and photographed. Visual inspection and measurements revealed that virtually all components were in excellent condition. The engine components and their condition are described as follows (see APPENDIX F for photographs and APPENDIX G for Dimensional Inspection Sheets):
- o Pistons Pistons and rings showed no evidence of scoring. Rings had no breakage and were free to move in the ring grooves. Ring grooves were still tight. Piston skirts were clean no signs of varnishing. Varnish was only evident on the bottom side of the piston heads where cooling oil made contact.

Although the outward appearance of the pistons was good, six pistons showed signs of severe stress. Cracks had developed in the piston pin bosses in the upper half of the wrist pin bores. Piston numbers 1 and 8 did not show signs of cracking. Carbon buildup on pistons and top lands was light.

- o Piston Pin No visual wear.
- o Cylinders Good appearance with only minimal wear indicated.
- o Crankshaft Main Journals Very good condition.
- o Crankshaft Rod Journals Very good condition.
- o Main and Rod Bearings No scratching and no overlay breakthrough.
- o Cylinder Head Intake and Exhaust Valve Seats Very good condition.
- o Intake and Exhaust Valve Faces Good condition.
- o Camshaft Lobes and bearing surfaces were in excellent condition.

- o Gears Crankshaft, Camshaft, Oil Pump Drive and Injection Pump Drive-good condition with no scratching or scoring.
- o Oil Pump Pickup Tube Broken at the bottom end near the pan did not prevent oil pickup.
- o Engine Torsional Vibration Damper Showed signs of fatique failure some of the elastomer worked loose.
- 6.2.7. Engine Oil Consumption. Oil consumption during the test was recorded by using the method of adding oil to the engine as required before engine start-up. Oil consumption was light. Results are shown in Table 6.
- 6.2.8. Oil Spectrographic Analysis. Oil samples were taken at 25-hour intervals and forwarded to the Petroleum Field Office East, New Cumberland, Pennsylvania. Report findings met NATO requirements as shown in APPENDIX E. (Oil sampling analysis was started at 126.5 hours).
- 6.2.9. Full-load Heat Rejection. Maximum full-load Brake Specific Heat Rejection measured 0.585 W/W (24.8 BTU/BHP-MIN) at rated speed, 2,600 RPM. The total heat rejected was 217.3 kW (12,356 BTU/MIN). Full-load heat rejection characteristics are shown in Figures 11 and 12.
- 6.2.10. Neither Smoke Readings nor Full-load Air Flow Were Measured. However, some data from a previously tested engine of the same model have been added to this report for general informational purposes. These data are shown in Figure 13 and Table 7.
- 6.2.11. Fuel Map Data are shown in Figure 14.
- 6.2.12. Performance Data Sheets Required by NATO Specifications. Data are shown in APPENDIX H.

SUPPLEMENTARY NOTE: THE ILLUSTRATION AND TABLES IN PAGES 16 THROUGH 33 ARE ARRANGED IN THE FOLLOWING FORMAT:

ILLUSTRATION (METRIC UNITS)

ILLUSTRATION (ENGLISH UNITS)

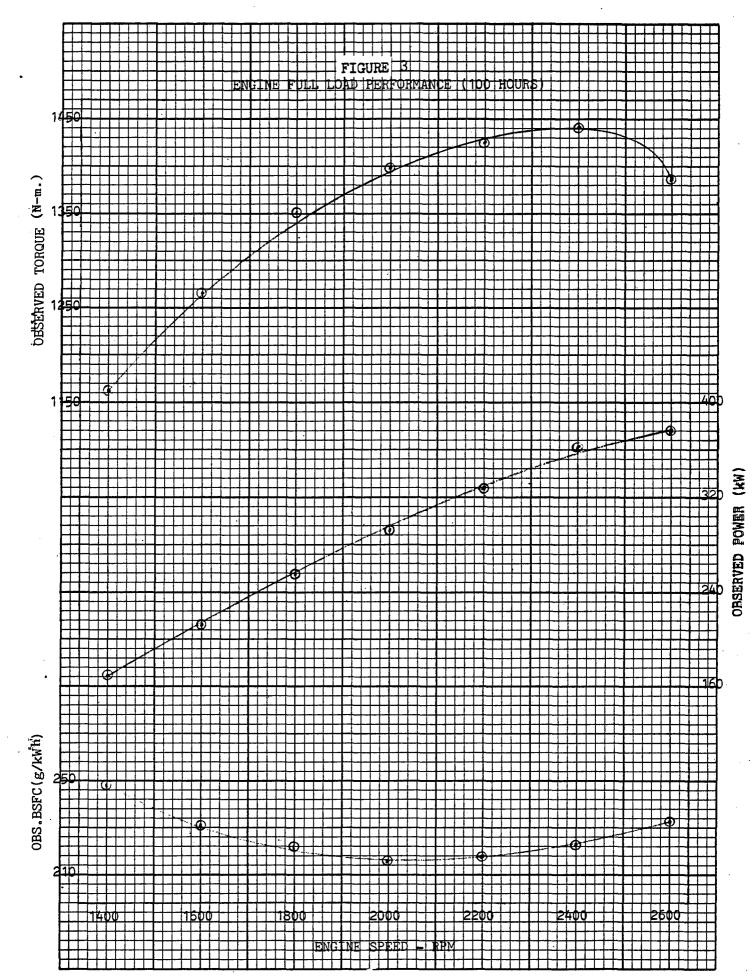
TABLE (ENGLISH AND METRIC UNTIS)

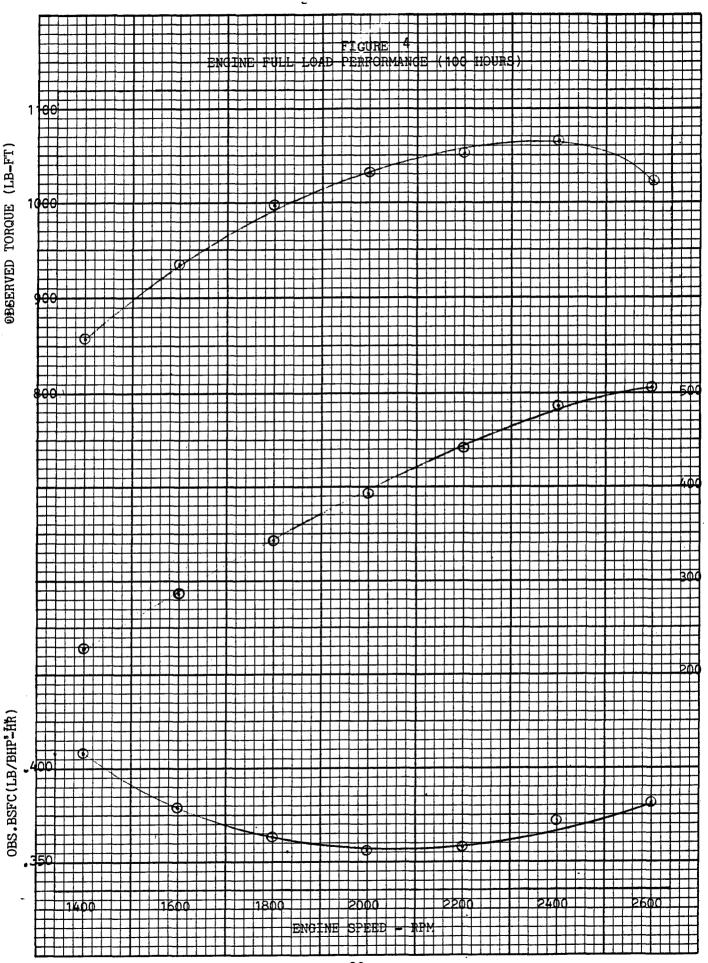
ILLUSTRATIONS HAVE DUPLICATE TITLES BUT DO NOT PRESENT DUPLICATE VALUES.

16

17

Code E-436 Engine Full Load Performance Data Before Endurance - O Hours


ENGINE COOLANT OUTLET TEMP OF (OC)	201.6	202.1	201.7	(94.3) 201.8	(94.3) 201.9	(94.4)	(94.6) 202.1	(64.5)
FUEL TEMP TO ENGINE OF (OC)	87	(30°05) 86 (30°05)	88	(31°.1) 86	(30 . 0) 86	(30.0) 85	(29.4)	(59.4)
AIR CLEANER OUTLET TEMP OF (OC)	84 (28 0)	86	(30.0) 86 (30.0)	(30.0) 86	(30°0) 86	(30°0) 85	(29.4) 85	(58.4)
OIL SUMP TEMP OF (OC)	261	259	257	254	(123 . 3) 252	(122.2) 249	(120.6) 247	(119.4)
OBSERVED SPECIFIC FUEL CONSUMPTION LB/BHP-HR (g/kwh)	0.379	0.367	0.356	0.359	(218) 0.366	(223) 0.376	(228) 0.404	(246)
OBSERVED FUEL FLOW LB/HR (KG/HR)	191.84	171.76	156.22	139.72	(63 . 38) 123 . 55	(56.04) 106.43	(48.28) 91.48	(41.50)
OBSERVED POWER BHP (KW)	506.4	484.8	438.5	389.1	(290,0) 337.4	(252.0) 283.4	(211.0) 22 6. 6	(169.0)
OBSERVED TORQUE LB-FT (Nm)	1023 (1387)	1061	1047	1022	984	(1334) 928 (1000)	(1258) 849	(1151)
SPEED (RPM)	2,600	2,400	2,200	2,000	1,800	1,600	1,400	

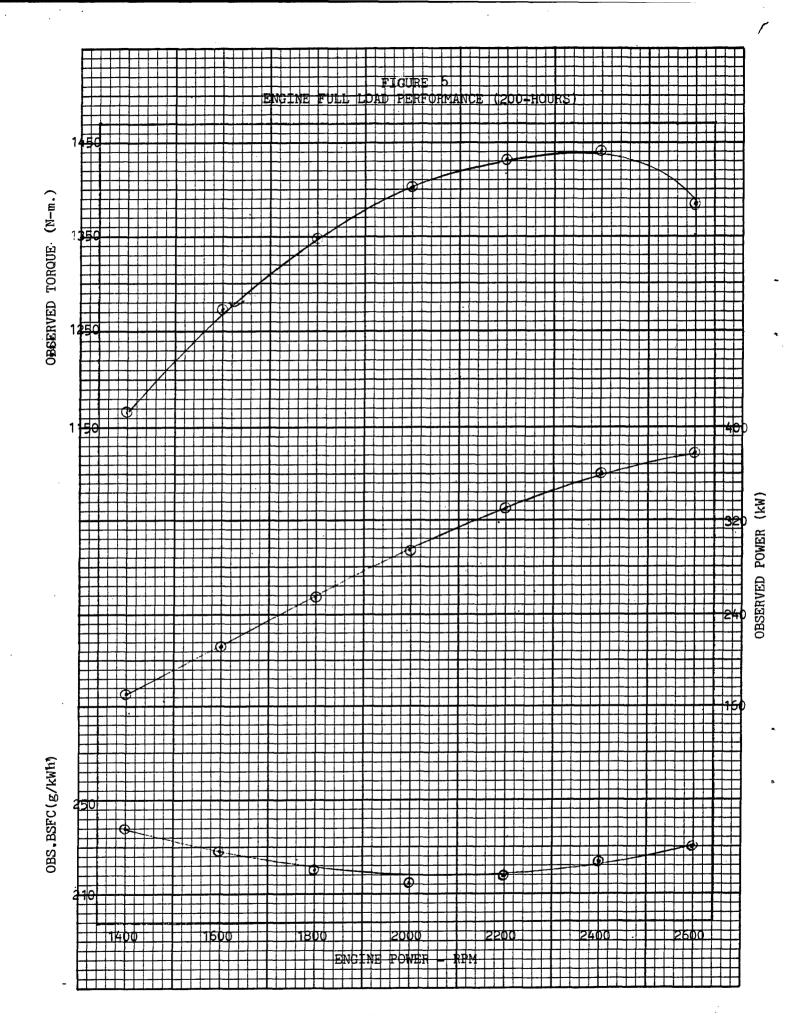

18

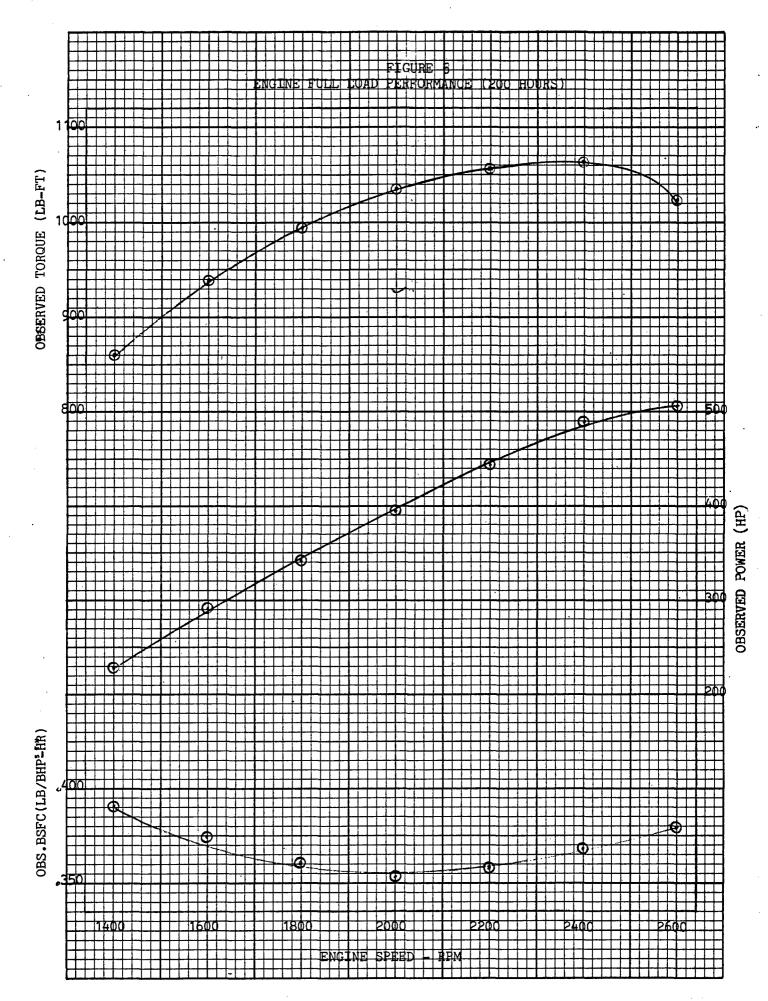
Applicable Test Conditions/Range Variations

Exhaust Gas Outlet Pressure +15.3 to .57 in. $\mathrm{H_2^{\,0}}$ (101.9 to 98.2 kPa) Intake Air Restriction -4.6 to -5.8 in. H_2^0 (96.9 to 97.9 kPa)

Dry Air Barometer: 28.77 -in. Hg (97.4 kPa)

Code E-436 Engine Full Load Performance Data


After 100 Hours of Endurance

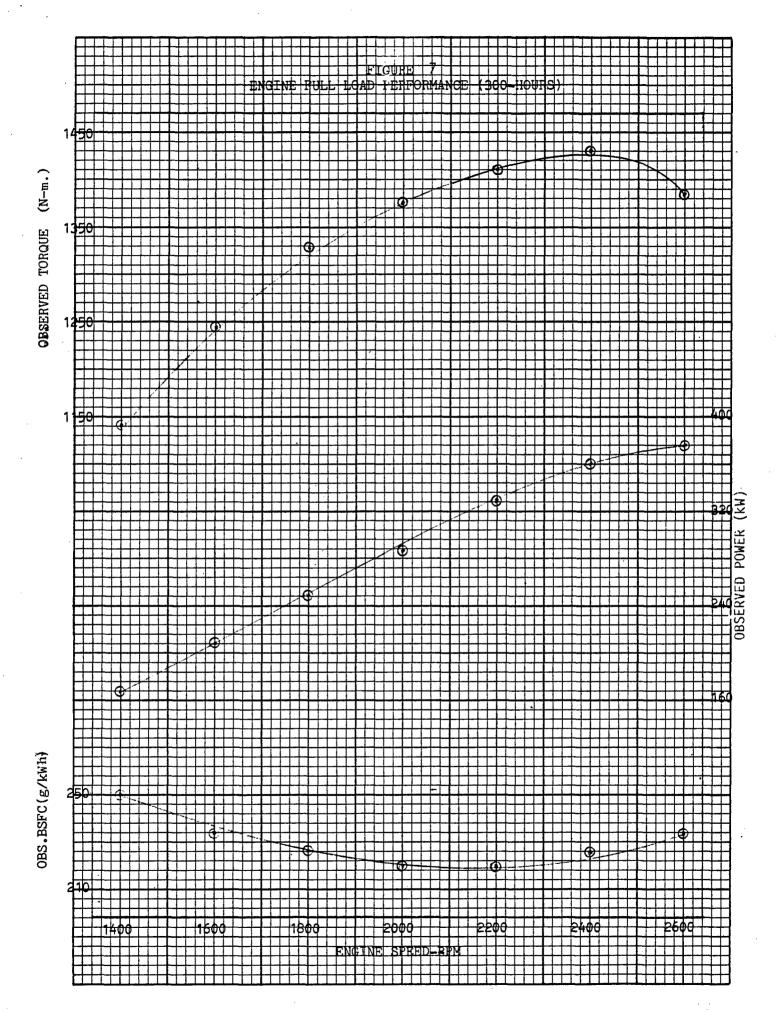

ENGINE COOLANT OUTLET TEMP OF (°C)	νį.	(9)	(7)	رَىن	(9)	ω,	3)	7	3)	رما ا	(5)	6	
ENGI COOL OUTL OF (°C)	202	(94.6)	(93	200	(93.	201	(94.	201	. 60)	201	(94.	201.	,
FUEL TEMP TO ENGINE OF (OC)	80.4	(26.9) 82.5	(28.1)	84.5	(29.2)	82.4	(58.0)	82.5	(28,1)	6.98	(30.5)	84.1	(0,00)
AIR CLEANER OUTLET TEMP OF (OC)	78.7	(25.9) 74.2	(23.4)	75.0	(23.9)	76.8	(54.9)	76.8	(54.9)	79.1	(26.2)	79.5	17 507
OIL SUMP TEMP OF (OC)	260	256.8	(124.9)	253.9	(123.3)	252.2	(122.3)	250.1	(121.2)	247.6	(119.8)	245	(110 0)
OBSERVED SPECIFIC FUEL CONSUMPTION LB/BHP-HR (g/kWh)	0.383	0.367	(223,2)	0.358	(217.8)	0.356	(216,6)	0.364	(221.4)	0.379	(230.5)	0.407	19 4701
OBSERVED FUEL FLOW LB/HR (KG/HR)	193.78	(87.90) 178.52	(80.98)	157.45	(71.42)	139.58	(63.31)	124.54	(26.49)	107.87	(48.93)	93.06	(40 01)
OBSERVED POWER BHP (kW)	505.9	(3/1.2)	(362.6)	440.3	(328.3)	392.6	(292.8)	341.7	(254.8)	284.5	(211.9)	228	(170 3)
OBSERVED TORQUE LB-FT (Nm)	1022	1064	(1443)	1051	(1425)	1031.	(1398)	266	(1352)	934	(1267)	857	(1162)
SPEED (RPM)	2,600	2,400		2,200		2,000		1,800		1,600		1,400	

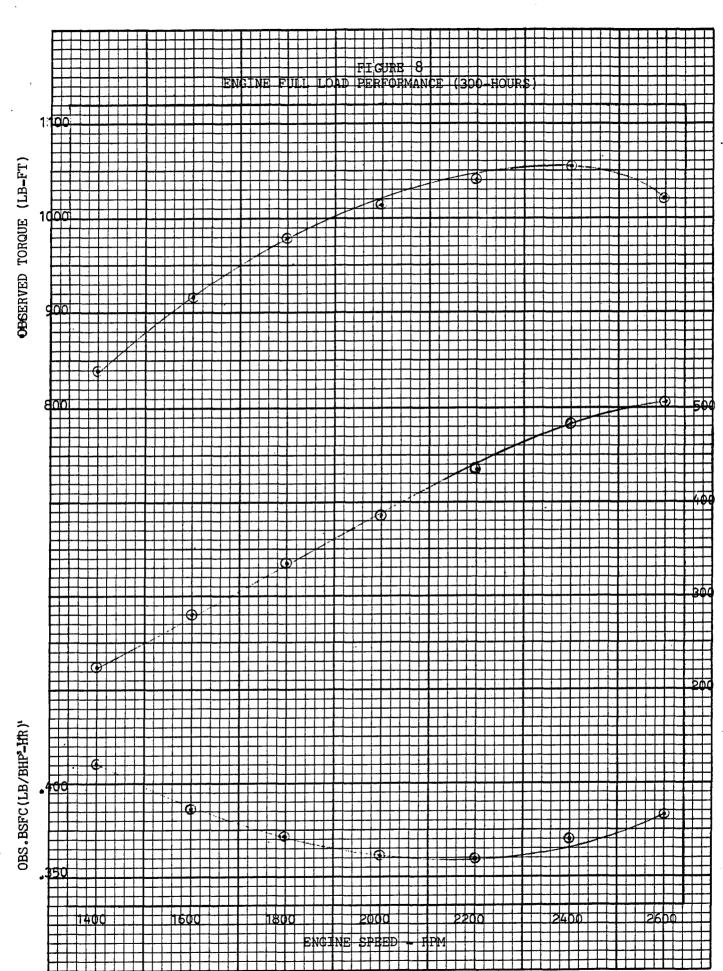
21

Applicable Test Condition/Range Variation

Exhaust Gas Outlet Pressure 14.3 to .8 in. H20 (101.6 to 98.3 kPa) Intake Air Restriction -5.3 to -1.2 in. $\rm H_2^0$ (96.7 to 97.8 kPa) 29.08 in. Hg (196.5 kPa) Dry Air Barometer:

Code E-436 Engine Full Load Performance Data


After 200 Hours of Endurance


ENGINE COOLANT OUTLET TEMP OF (OC)	200.7	(93.7)	(4,49)	201.6	(64.5)	201.4	(94.1)	201.4	(04.1)	201.4	(04.1)	201 7	(94.2)
FUEL TEMP TO ENGINE OF (OC)	83.6	(29.7) 83.0	(28.3)	81.4	(27.4)	82.2	(27.9)	83.6	(28.7)	82.9	(28.3)	83.3	(28.5)
AIR CLEANER OUTLET TEMP OF (OC)	9.69	(20.9)	(21,9)	73.8	(23.2)	74.8	(23.8)	74.4	(23.6)	76.3	(24.6)	75.7	(24.3)
OIL SUMP TEMP OF (OC)	257.9	257.1	(125.1)	254.9	(123.8)	252.4	(122.4)	250.0	(121.1)	247.7	(119,8)	245.4	(118.6)
OBSERVED SPECIFIC FUEL CONSUMPTION LB/BHP-HR (g/kWh)	0.379	0.368	(223.9)	0.358	(217.8)	0.353	(214.7)	0.361	(219.6)	0.374	(227.5)	0.391	(237.8)
OBSERVED FUEL FLOW LB/HR (KG/HR)	191.88	177.98	(80.73)	158.30	(71.80)	138.98	(63.04)	122,99	(55.79)	106.98	(48.53)	89,80	(40.73)
OBSERVED POWER BHP (KW)	505.9	483.5	(360.5)	442.3	(329.8)	393.8	(293.7)	340.7	(254.1)	286.1	(213.3)	229.5	(171.1)
OBSERVED TORQUE LB-FT (Nm)	1022	1063	(1441.4)	1056	(1431.9)	1034	(1402.1)	994	(1347.8)	939	(1273.3)	861	(1167.5)
SPEED (RPM)	2,600	2,400	,	2,200		2,000		1,800	,	1,600		1,400	

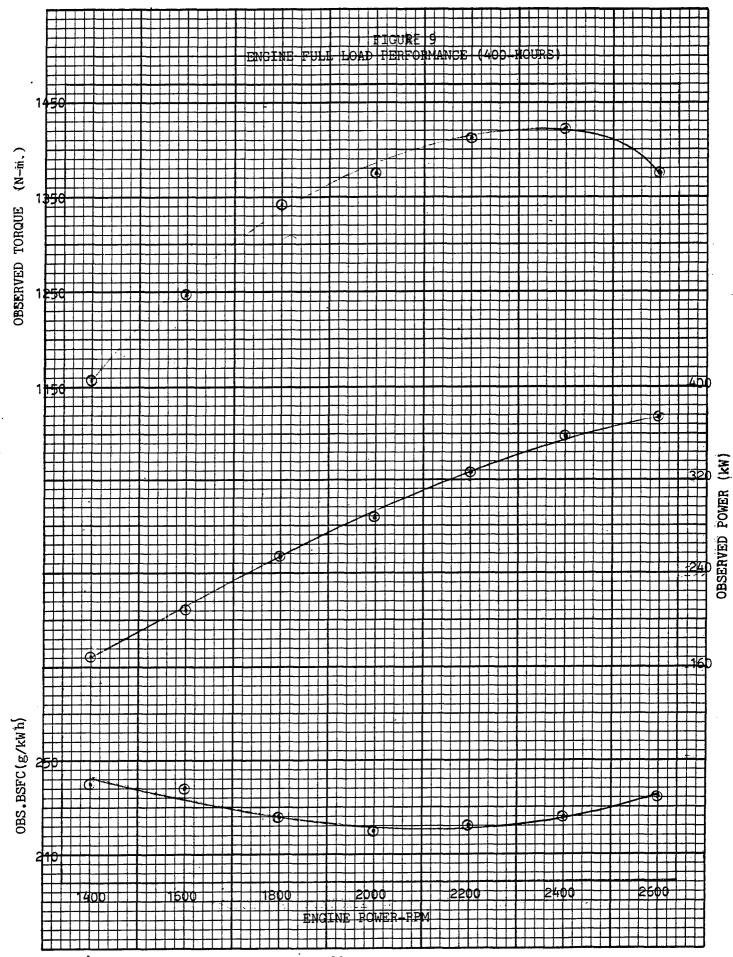
Applicable Test Conditions/Range Variations

Exhuast Gas Outlet Pressure 19.0 to .2 in. H²0 (102.8 to 98.1 kPa) Intake Air Restriction -5.5 to -1.3 in. H²0 (96.7 to 97.7 kPa) -in. Hg (99.6 kPa) Dry Air Barometer: 29.43

TABLE 3

Code E-436 Engine Full Load Performance Data

After 300 Hours of Endurance


ENGINE COOLANT OUTLET TEMP OF (OC)	199.6 (93.1) 198.8 (92.7) 198.7 (92.5) 198.7 (92.6) 198.7 (92.6)
FUEL TEMP TO ENGINE OF (OC)	85.5 (29.7) 84.9 (29.4) 83.3 (28.5) 81.5 (27.5) 82.3 (27.9) 81.0 (27.2) 82.4 (28.0)
AIR CLEANER OUTLET TEMP OF (OC)	80.8 (27.1) 79.9 (26.6) 78.4 (25.8) 71.6 (22.0) 70.0 (21.1) 70.2 (21.1)
OIL SUMP OF (OC)	257.2 (125.1) 255.1 (123.9) 251.2 (121.8) 247.9 (119.9) 245.7 (118.7) 243.6 (117.6) 240.9 (116.1)
OBSERVED SPECIFIC FUEL CONSUMPTION LB/BHP-HR (g/kWh)	0.383 (233.0) 0.371 (225.7) 0.360 (219.0) 0.362 (220.2) 0.373 (226.9) 0.386 (234.8) 0.412
OBSERVED FUEL FLOW LB/HR (KG/HR)	193.45 (87.75) 178.77 (81.09) 157.01 (71.22) 139.74 (83.39) 125.17 (56.78) 108.00 (48.99) 92.31 (41.87)
OBSERVED POWER BHP (KW)	505.0 (376.6) 482.1 (359.5) 435.6 (324.8) 385.7 (287.6) 335.5 (250.2) 279.7 (208.6) 223.9 (167.0)
OBSERVED TORQUE LB-FT (Nm)	1020 (1383.1) 1055 (1430.6) 1040 (1410.2) 1013 (1373.6) 997 (1327.5) 918 (1244.8) 840 (1139.0)
SPEED (RPM)	2,600 2,400 2,200 1,800 1,600

Applicable Test Conditions/Range Variations

Intake Air Restriction -6.1 to -1.4 in. H²0 (96.6 to 97.7 kPa)

Exhaust Gas Outlet Pressure 18.3 to .12 in. H_2^0 (102.6 to 98.1 kPa)

Dry Air Barometer: 28.67 -in. Hg (97.1 kPa)

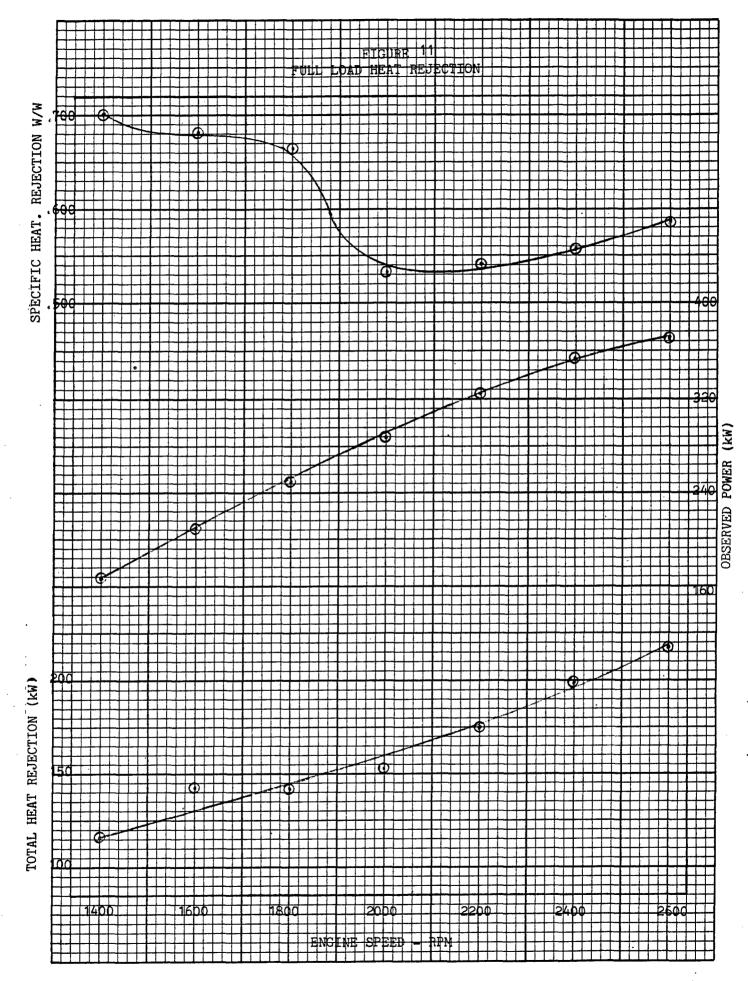
OBSERVED POWER (HP)

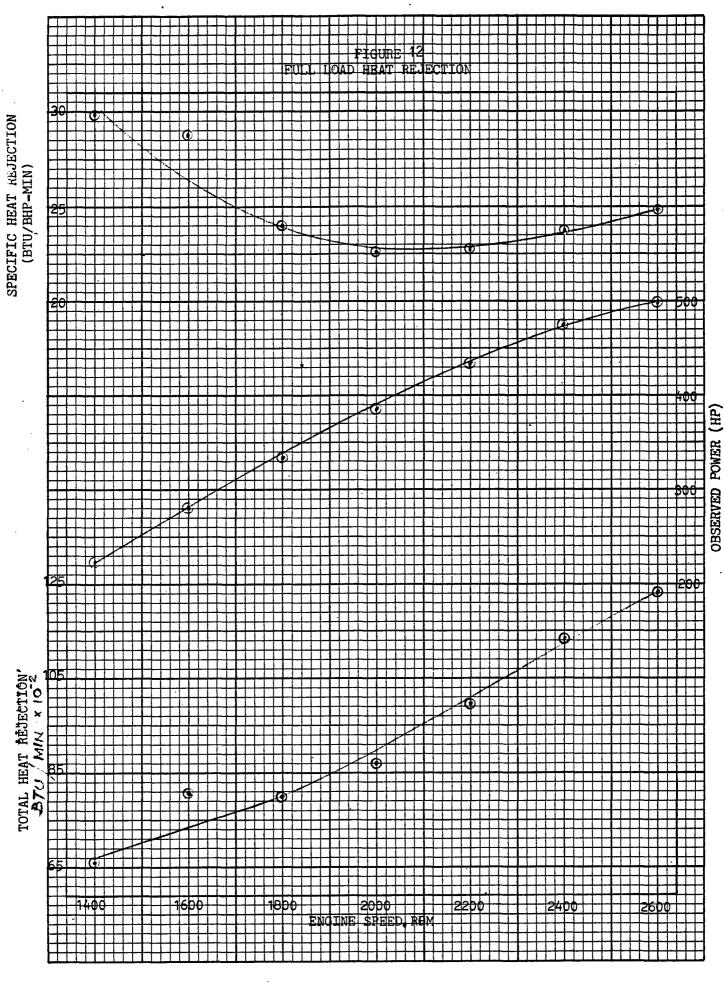
29

Code E-436 Engine Full Load Performance Data

After 400 Hours of Endurance

ENGINE COOLANT OUTLET TEMP ^O F (^O C)	201.1	(93.9) 201.3	(94.1)	201.4	(64.1)	201.3	(94.1)	201.6	(64.5)	201.5	(64.2)	198.8	(92.7)
FUEL TEMP TO ENGINE OF (°C)	87.3	(30.7) 87.9	(31,1)	85.7	(59,8)	. 92.6	(50.8)	85.0	(29.4)	84.0	(58.9)	82.0	(27.8)
AIR CLEANER OUTLET TEMP OF (^O C)	79.5	(50.4)	(25.9)	77.5	(25.3)	77.5	(25,3)	77.3	(25.2)	77.2	(25.1)	76.9	(24.9)
OIL SUMP TEMP OF (OC)	259.1	256.6	(124.8)	253.3	(122.9)	250.2	(121.2)	247.8	(119.9)	244.6	(118.1)	237.8	(114.3)
OBSERVED SPECIFIC FUEL CONSUMPTION LB/BHP-HR (g/kw h)	0.395	0.372	(226.3)	0.365	(222,0)	0.364	(221.4)	0.372	(226.3)	0.391	(237.8)	0.395	(240.3)
OBSERVED FUEL FLOW LB/HR (KG/HR)	193.71	178.66	(81.04)	159.18	(72.20)	140.43	(63,70)	126.11	(57.20)	109.70	(46.76)	89.77	(40.72)
OBSERVED POWER BHP (KW)	503.0	479.8	(357.8)	436.1	(325.2)	386.1	(587.9)	339.3	(253.0)	280.6	(209.2)	227.4	(169:6)
OBSERVED TORQUE LB-FT (Nm)	1016	1050	(1423.8)	1041	(1411.6)	1014	(1375.0)	066	(1342.4)	921	(1248.9)	853	(1156.7)
SPEED (RPM)	2,600	2,400		2,200		2,000		1,800		1,600		1,400	


Applicable Test Conditions/Range Variations


Intake Air Restriction -5.8 to 1.3 in. H_2O (96.6 to 98.4 kPa) Exhaust Gas Outlet Pressure 19 to .03 in. H_2O (102.8 to 98.1 kPa) Dry Air Barometer: 28.96 -in. Hg (98.1 kPa)

Oil Consumption During Endurance

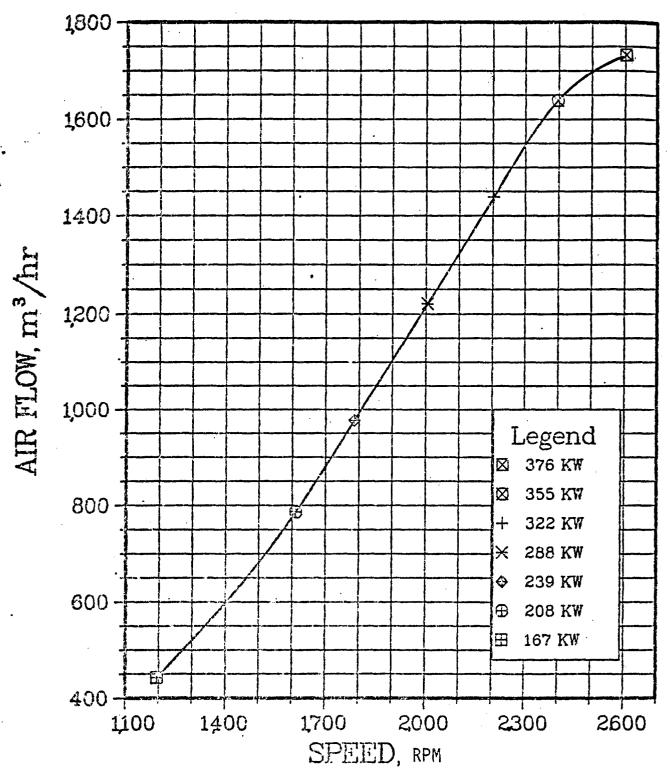
Engine Test	Quantity Oil	Cumulative
Hours	Added (lb)	Consumption (lb)
0 7.5 14.0 27.5 40.0 47.5 54.0 60.5 80.5 87.5	0 3.6 1.8 1.8 1.8 3.6 1.8 1.8	SUMP FULL 3.6 5.4 7.2 9.0 10.8 14.4 16.2 18.0 19.8
140.5	1.8	21.6
154.0	2.1	23.7
160.0	1.8	25.5
174.0	2.5	28.0
187.0	1.8	29.8
200.0	0	29.8
230.0	3.6	33.4
260.0	1.4	34.8
287.0	2.0	36.8
300.0	0	36.8
307.0	1.5	38.3
314.0	1	39.3
334.0	1.9	41.2
354.0	.5	41.7
370.0	1.2	42.9
380.0	.5	43.4
400.	0	43.4

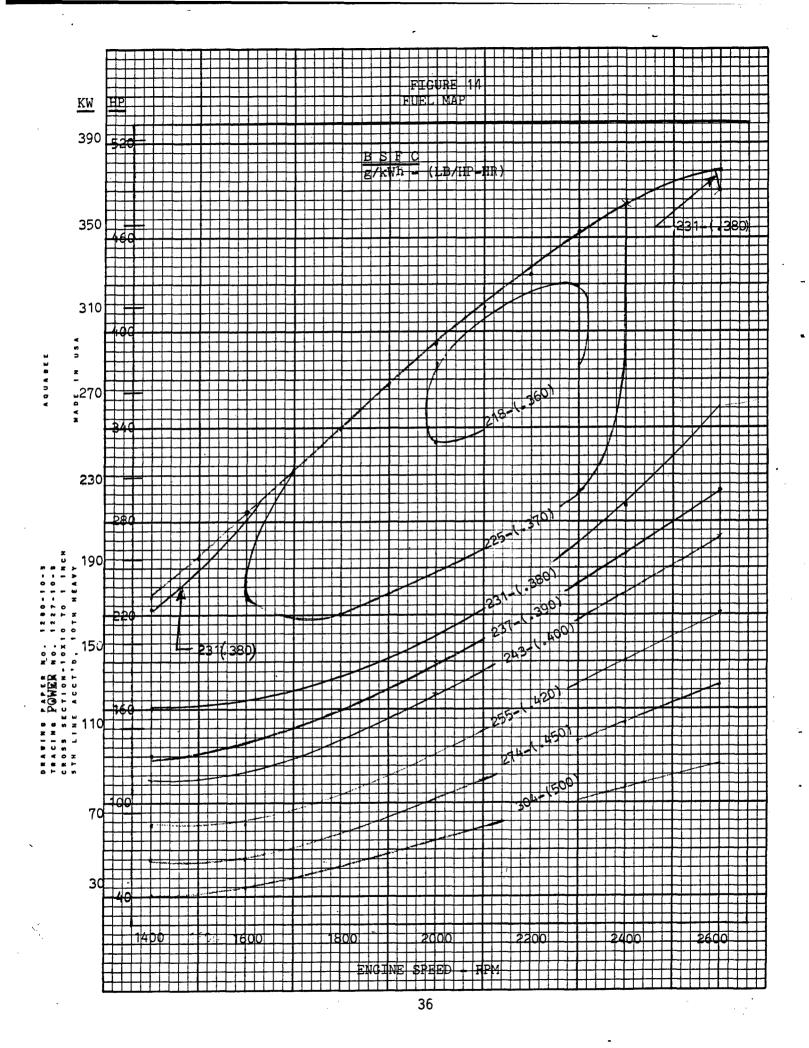
TABLE 6

FULL POWER INLET AIR FLOW

300

NOTE: (These values not from engine tested but from an engine of the same model and are submitted as general information)




Figure 13 FULL POWER INLET AIR FLOW

AIR FLOW UNITS, STANDARD CUBIC METRES PER HOUR

NOTE: (These values not from engine tested but from an engine of the same model and are submitted as general information)

SPEED		ENDURANCE HOUPS	
RPM	0 HOURS	100 HOURS	200 Hours
2,600	1.4	1.85	1.65
2,400	1.05	1.5	1.35
2,200	1.1	1.45	1.55
2,000	1.35	2.0	1.3
1,800	3.25	3.8	3.8
1,600	3.25	3.8	3.8

TABLE 7. BOSCH SMOKE READINGS

APPENDIX A - TEST PROGRAM

PROPULSION SYSTEMS DIVISION TEST PROGRAM CODE E-436 ENGINE

(Cell #6)

TITIE: MACI Evaluation of the Code E-436 Engine

PURPOSE:

To determine the military adaptability and performance characteristics of Code E-436 Commercial Diesel Engine.

OUTLINE OF TESTS:

- 1. Prepare Code E-436 engine for performance and endurance tests.
- 2. Install instrumentation.
- 3. Calibration of instrumentation and equipment.
- 4. Engine operating limits, adjustments and instrumentation checkout.
- 5. Engine instrumentation and full load operational check-out.
- 6. Full load performance.
- 7. Part load performance.
- 8. Full load heat rejection.
- 9. Four hundred hour NATO endurance test.
- 10. Disassembly, visual inspection and components measurement of engine (may be conducted in-house and/or contractor's facility).
- 11. Evaluation of results and final report.

TEST MATERIAL:

1. Engine Code E-436

Type 90 VEE, 500 HP @ 2600 rpm

Number of cylinders 8

Bore and stroke, in. 5.50 x 4.75

Displacement - cu. in. 903

Method of operation 4 cycle turbocharged, after

cooled compression ignition

Compression ratio 15.5 to 1

2. Lubricating oil - Referee, grade 30, conforming to Military Specification MIL-I-2104C.

3. Fuel - Federal Specification MII-F-46162B (high sulfur).

TEST EQUIPMENT:

Test Cell No 6, dynamometer, controls, associated instrumentation and equipment, Bldg. 212.

TEST PROCEDURES:

- 1. Prepare engine for performance tests.
- a. Install engine in test cell and make connections to dynamometer. Obtain dry weight of engine and record. Make necessary fuel, exhaust, and intake air connections. Install cooling tower and fuel throttle and shutdown connection. Make provisions for smoke readings and measuring air flow.
- b. Install all required thermocouples, pressure lines, speed and load cell connections. Install warning/shutdown lights for critical temperature/pressure and RFM limits on engine and dynamometer equipment.
- c. During heat rejection tests, normal type cooling tower will be installed. Thermostat is required to be blocked in open position during test to assure accurate results. An engine thermostat (180° F) will be used. The cooling tower will be adjusted to maintain 205° F \pm 5° engine out temperature.
- d. Engine blow-by and/or crankcase pressure will be closely monitored during full power performance run to assure adequate engine operation. In addition engine oil temperature and pressure will be closely monitored.

- e. Cooling tower will utilize a sight class in the lower pipe (engine filled with a 50/50 water and antifreeze mixture. A 15 psi pressure cap will be used and shop air, through a regulator, will supply approximately 12 psi pressure to the cooling system.
- 2. Instrumentation Install instrumentation to obtain and record data at each specified speed.

a.	Temp	erature, ° F	Range	Accuracy
	(1)	Air, cell ambient (LAR)	60–120	<u>+</u> 2
	(2)	Air entrance to air meter	60–120	<u>+</u> 2
	(3)	Air turbo inlet after air cleaner	60-120	<u>+</u> 2
	(4)	Air, turbo outlet (to aftercooler, R&L)	120-500	<u>+</u> 2
	(5)	Exhaust, after turbo	200-1200	<u>+</u> 10
	(6)	Exhaust, before turbo (LAR)	200-1400	<u>+</u> 10
	(7)	Exhaust, ports (8)	200-1500	<u>+</u> 10
	(8)	Oil sump	120-300	<u>+</u> 2
	(9)	Fuel, before transfer pump	60-120	<u>±</u> 2
((10)	Fuel Spill	60-160	<u>+</u> 2
((11)	Coolant, engine inlet **	120-250	<u>±</u> 2
' ((12)	Coolant, engine outlet **	120-250	± 2
((13)	Combustion air at meter (Meriam flow meter)	30-160	± 2
((14)	Cooling water, tower inlet *	35-100	
((15)	Cooling water, tower outlet *	35 - 250	
((16)	Engine oil gallery (manifold)	60-270-	
((17)	Instrumentation bath	200	<u>+</u> 2

^{*} Indicates Quartz Temperature Probes

^{**} Indicates Quartz Temperature Probes in addition to regular thermocouple

b.	Pres	sures, Gauge	Range	Accuracy
	(1)	Air, Test cell (in. H ₂ 0)	0 to -1	<u>+</u> .1
	(2)	Air, before turbo (in H20)-S	0 to -25	<u>±</u> 1
	(3)	Air, after turbo (in. hg)	0 to +60	<u>+.</u> 2
٠	(4)	Air across Meriam flow meter (in. H ₂ 0)	0 to -28	<u>±.1</u>
	(5)	Air at Meriam flow meter center (in. H ₂ 0)	0 to -20	<u>+</u> •05
	(6)	Air crankcase (in. H ₂ 0)	-5 to +5	± .1
	(7)	Exhaust, before turbo (in. hg) Left & Right	0 to +60	<u>+•</u> 5
	(8)	Exhaust, outlet (in. H ₂ 0)-S	0 to +50	
	(9)	Fuel supply before transfer pump (psi) at primary filter	0 to -5	<u>+</u> ,1
	(10)	Fuel supply after transfer pump (psi) at secondary filter	0 to +70	± 1
	(11)	Engine oil gallery (psi)	0 to +100	<u>+</u> 2
	(12)	Coolant pump outlet (psi)	0 to +50	<u>+</u> 2
	(13)	Coolant pump inlet (psi)	0 to +25	± 1
C.	Misce	<u>llaneous</u>		
	(1)	Engine speed, (RPM)	0 - 3000	± 5
	(2)	Dynamometer load, (ft-lb)	0 - 2000	<u>+</u> 1
	(3)	Fuel flow (lb/hr)	200	<u>+.</u> 1
	(4)	Blowby (CFM)	0 - 10	<u>+.</u> 2
	(5)	Smoke Density, Bosch meter		· • • • • •

d. Special Instruction Considerations

- (1) Dymec data acquisition system to be used for data gathering.
 - (2) Quartz Thermometers to be used for heat rejection test.
 - (3) Load cell to be used for measuring torque.
 - (4) Digital Cox fuel weigh system to be used for measuring fuel consumption.
 - (5) Cooling water weigh system 0-200 lbs.
 - (6) Smoke density, Bosch system.
 - (7) Blowby meter for measuring engine blowby.
 - (8) Temperature reference bath (Maintain at 200° F).
 - (9) Meriam air flow meter.

(6) Engine coolant out

e. The following monitors will be provided for operator use:

Temperature	Pressure
(1) Ambient air (L&R)	(1) Oil Gallery
(2) Air after turbo	(2) Air after turbo
(3) Oil gallery	(3) Fuel after pump
(4) Fuel before pump	(4) Exhaust back pressure
(5) Engine coolant in	

3. Calibration of instrumentation and equipment.

All instrumentation and equipment will be calibrated prior to start of test and at ranges specified in the previous paragraph 2.

4. Engine operating limits and adjustments.

a./ Observe the following engine operating limits and test conditions for performance and endurance tests.

- . (1) Oil Gallery temperature, 250° F warning, 260° F manual return to idle and contact test engineer.
- (2) Oil pressure idle 15 PSI warning, 10 PSI shutdown. Oil pressure normal operation 45 to 65 PSI above 1000 RPM, 30 PSI shutdown.
 - (3) Air cell Ambient as close as possible to 77° F.
- (4) Coolant outlet temperature $205 \pm 5^{\circ}$ F, warning 210° F, manual return to idle at 215° F. Cooling system will be pressurized to 12 PSI.
 - (5) Fuel temperature before pump: $85 \pm 5^{\circ}$ F.
 - (6) Exhaust outlet pressure at rated conditions 16 in. $H_2O \pm 3$.
 - (7) Crankcase pressure maximum 5 in. H,0.
 - (8) Nominal fuel flow 200 lb/hr at 2600 RPM.
 - (9) Exhaust temperature into turbo, 1080° F maximum.

b./ Maintain and record the following adjustments at completion of each 100 hour interval of endurance test or as indicated. Contact test engineer prior to any adjustment.

- (1) Idle speed 650 RPM.
- (2) Governed speed (no load) 2960 RPM.
- (3) Max torque 1030 ft-lb @ 1900 RPM.
- (4) Full load 2600 RPM.

5. Engine Instrumentation and Full Load Operational Check-Out.

a. Engine will be run to check leaks, instrumentation, recording and printout systems. The following temperatures and pressures will be maintained:

- (1) Inlet air (maintain as close as possible to 77° F)
- (2) Air pressure at turbocharger inlet at rated conditions, -5 ± 1 in. H₂O_•
- (3) Exhaust pressure at turbo outlet at rated conditions, 16 ± 3 in. H_2O .
- (4) Coolant outlet temperature 205 ± 5° F
- (5) Fuel temperature before pump 85 ± 5° F

Speeds will be verified after break-in.

b. Full load operational check will be conducted according to the following schedule. During break-in monitor blowby in CFM and/or pressure. Do not continue test if blowby exceeds allowed maximum. Take complete data and record on log sheet for each break-in period. Repeat the cycle down and up.**

Period No.	Time, Minutes	Engine, RPM	Observed BHP	
1	10	650 (Idle)	· · · · · · · · · · · · · · · · · · ·	_
2	10	1200	50	211
3	10	1400	100	375
4	10	1600	150	493
5	10	1700	200	:13
6	10	1900	250	591
7	20	2100	300	
8	20	2200	350	150
9	20	2400	400	836
10	20	2500	450	575
11	20	2600	500	945
12	20	-	• •	1010

* Repeat this cycle in a reverse order using same RFM and power values.

c. During period 5 or following period 7, check governor and notify test engineer prior to making adjustments, to limit the maximum speeds as follows:

Full load 2600 RPM No load (Governed Speed) 2960 RPM

- e. During period No-11 the following limits must prevail..
 - (1) Oil gallery pressure 30 to 55 PSI

(2) Exhaust temperature into 1080° F max.

(3) Crankcase pressure (in.H₂0)

5

(4) Power output at rated

500 ± 3% at 85°F air inlet, 29.38 in HG Barometer dry

6. Performance Test (Nominal 500 EHP)

Conduct performance tests with full rack, under the conditions listed in paragraph 4. Record all data listed under instrumentation for engine speeds of 1400 RPM to 2600 RPM at 200 RPM increments. At each setting the engine should be run for a sufficient time for stabilization. Additional tests (part load performance and heat rejection) will be conducted at completion of durability test.

7. Part Load Performance Test (Nominal 500 BHP)

Conduct part load performance tests at 85, 70, 60, 50, 40, 25 and 15 percent loads using speeds of 1400 RPM to 2600 RPM in 100 RPM increments. Paragraph 5 conditions will be maintained during runs. One hundred percent loads will be determined just prior to part load testing. Perform an idle fuel consumption test run with complete printout at the end of part load performance tests.

8. Heat Rejection Tests(Perform at Completion of Durability Test)

Determine heat rejection at full load, $205 \pm 5^{\circ}$ F, engine coolant out temperature at the following speeds; 1400 RPM to 2600 RPM in 200 RPM increments. Remaining conditions as specified in paragraph 4. (Engine operating limits and adjustments).

9. Four Hundred (LOO) Hour NATO Endurance Test

a. The 400 hour NATO endurance will be divided into four periods of 100 hours each. Each 100 hour period is to consist of ten (10), ten hour periods as shown in test Schedule A. (New NATO cycle).

TEST SCHEDULE A

Period	Percent Rated Speed	Percent Load	(<u>lb/ft</u>)	Time Hours
1	Idle (650 RPM)	0	(1010)	1/2
2	100 (2600 RPM) Governed Speed (2960 RPM)	100	(1010)	1/2
) 1,	75 (1950 RPM)	100		1/2
5	Idle ←► 100	0.4-100		±
•		4 Min. 6 Min.	-	2
6	60 (1560 RPM)	100		1/2
7	Idle (650 RPM)	0		1/2 1/2
8	Governed Speed (2960 RFM)	70	(707)	1/2
9	Max Torque Speed (1900 RFM)	100		.2
10	60 (1560 RFM)	50	(505)	1/2
		TOTAL DURATION	J	10

Conduct 400 hour NATO endurance test according to Test Schedule A. Values of speeds and torques to be provided by test engineer following completion of performance test.

b. During 400 hour endurance, the following pressures and temperatures will be regulated to the values as indicated.

(1) Pressures

- (a) Air presure at turbocharger inlet shall be set -5 ± 1 (in. H₂0) at rated conditions and restriction held throughout other tests.
- (b) Exhaust outlet pressure at full power through speed range, 13-19 inches H₂O: at idle and part load, O-13 inches of H₂O.

(2) Temperatures

- (a) Inlet air to turbocharger as close as possible to 77° F.
- (b) Coolant outlet temperature 205 + 5° F.
- (c) Fuel before secondary filter 85 \pm 5° F.
- c. Take four ounce oil sample before starting endurance and every 100 hours thereafter, take two ounce oil sample at 25 hour intervals. (Purge oil sample line and take sample from oil gallery with engine idling). Replace the removed sample oil with same amount and type new one.

- d. Check engine oil at completion of every five hour test period or before engine is started for a new day of test (whichever occurs first). Allow time for oil to settle before reaching full mark. Do not overfill.
- e. Data will be recorded during the last five minutes of each of the ten periods listed in Test Schedule A, and just before stopping engine.
- f. The following maintenance and adjustments to engine will be conducted after each 100 hour test period, and before power check. Check with test engineer.
 - (1) Change oil
 - (2) Replace oil and fuel filters
 - (3) Record oil added (less sample) to bring to required level
 - (4) Maintain adjustments as indicated on page A-5.
 - (5) Visually inspect engine for leaks, breaks, etc.
- g. The 100 hour power check tests shall be conducted under temperature and pressure conditions listed. Record all data listed under "Instrumentation" for engine speeds from 1400 RPM to 2600 RPM in 200 RPM increments, up only. At each setting, the engine should be run for a sufficient time for stabilization. In addition, smoke density samples will be taken at each speed setting.
 - 10. Obtain photographs of engine test set up.
- 11. Disassembly and Visual Inspection of Engine. Record breaking torques of cylinder head, crankshaft, and connecting rod bolts and photograph parts if required during disassembly. Make components wear measurement.
 - 12. Evaluation of Results and Report.
 - a. Consolidate and evaluate data.
 - b. Prepare report.
 - c. Obtain photographs of set up and engine parts as required.

JOB ASSIGNMENTS:

- 1. DRSTA-TB will be responsible for gathering data, maintaining a daily log book, and test data log, directing personnel and general execution of test.
- 2. DRSTA-RGES will be responsible for day to day technical decisions, monitoring test, evaluation of data, and preparing a report.
- 3. Any changes in the above test program shall be mutually agreed upon by DRSTA-TB and DRSTA-RGES and confirmed by a supplement to this basic test program. Each supplement will be evaluated for potential cost and for schedule revisions.

WRITTEN BY: -

. La Drong - Wheel 16 Nov 82

F. Rostam-Abadi Ext 48537 Project/Test Engineer

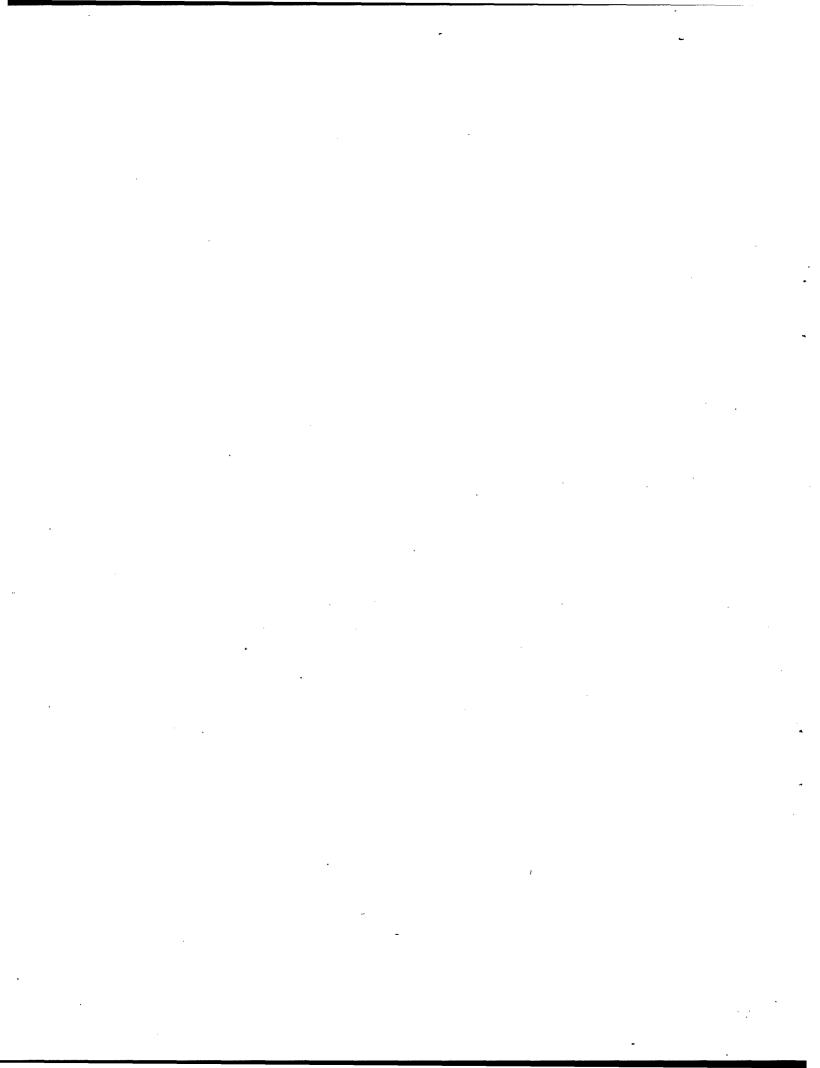
REVIEWED AND APPROVED BY:

Roy J. G. Rimpela Ext 48528 Team Leader/Engine Testing APPENDIX B - FUEL ANALYSIS

ANALYSES OF REFEREE GRADE DIESEL FUEL (MIL-F-46162B) SAMPLES

Properties	Requirements	#6 Tank <u>AL-12077-F</u>
Density, kg/L at 15°C	Report	0.8655
Gravity, °API	NR (1)	31.9
Distillation, °F (°C)		
Initial boiling point	Report	380 (193)
10% recovered	Report	446 (230)
50% recovered	473-545 (245-285)	514 (268)
90% recovered	626-675 (330-357)	616 (324)
95% recovered	662-707 (350-375)	646 (341)
End point, max	725 (385) max	678 (359)
Sulfur, wt%	0.95-1.05	1.05
Accelerated stability,		
total insolubles, mg/100 mL	1.5 max	1.4
Cetane number	40-45	54 .
Cetane index	40-45	42
Kinematic viscosity at		•
40°C, cSt	1.9-4.1	Oth Name
Cloud point, °C	-13 max	1933 1936
Particulate contamination,	•	
mg/L (0.8µm filter)	10 max	2.5
Volume filtered, L	i	1

⁽¹⁾ NR = No requirement
(2) -- = Not measured


APPENDIX C - SAMPLE DATA SHEET

OBJECT OF TEST TOOK POWER CURYE	- 1	FUEL MIL-F-45162B	OF NO E-135 EN	GINE SERIAL NO	(SAE30 MPERIAL OIL	TEST	ENGINEER RIMPELA OBSERVER BASTY S OWINS S OW STOP
DATE	1245						1430 1445
READING NO		ac	me	4	IV (C	99	7
TOTAL FIGURES (FACTORS)	200.00						200.00 334.30
1	29.73 /3858	1441.4	1431.9	1402.1	13478	1275.3	1167.5
CORRECTED EARONETER (HG)	29.62 277 2	305	329.8	293.7	254.1	2/3,3	121.1
VAPOR PRESSURE (HG) (03 3 19 19 19 19 19 19 19 19 19 19 19 19 19	R29:43 230.5	225.9	2.01.5	214.7	219.6	229.5	232.8
RY BULB TEMP (F)	70 FR	FR	PR	FR	P	84	FR
	2600	2400	2500	2000 2000	1801	1600	1408
DYNAMOMETER LOAD (LB FT) TO ROUE 1022 ID. OGSERVED HP HOPSE PW. 585.9	1022 1022 N. 585.9	1058/063	442.3	393.8	3407	286.77	2.29.5
CORRECTED HE GESERVED TORQUE CORRECTED TORQUE							
LEL METGHT INCREMENT (LB)	30-1 SEC READINGS 3 MIN AVERAGE						
TIME (SEC) CAL FUEL CONS (LBS PER HOUR) FUEL CONS (LBS BHP HR) TOTAL FUEL CONS (GALS)	191.883	177,984	158.302	138,983	128.979	106.984 374	89.796
	OIL CHANGE						
REFERENCE BATH TEMP (F)	200	500	200	200	199	199	500
QUARTZ TI WATER TOWER INLET TEMP	(F)						
			-				
QUARTZ 11 ENGINE COOLANT INLET	(F)						
WARIZ TZ-II DIFF	(F)						
BOSCH SMOKE READING							
BLOWBY (CFM) CRANKCASE OF MANAMETED	(001)						
CTION DATA	(030)						
TIME (SEC)							

					_	7	نخذ			· .	7,235		-								1	1.		44		4 1	:
•			k	\		1	X	.]			1							4 6	mm	m.	m	0.	- 2	2	me.		
c	3	9	ام	•	400	9	100	ય છ એ O			ω α	2	으면	80.6	4	55	8.5			8	12.5	18	75	500	8 2		
141531	33	86	19	30,	U Q	81	53.6	333 70	019407	006193	960	987	192	878	25	25.	013096	55.5	8	385	006424	000022	05/2	0031 65	00001	-	1
141	38	8	38	8	ā	a	200	85	28	11	2,5	85	88	86		++	100	00	++	4 + H	+++	+	1 +	++	++		į
	+ +	٠ 🛊 ٠	+ +	+	+ +	• 🙌 •	+ +	++	7 *	1	+ 4	100		10.5	+ -	31 -	000	86	1	38	181	38	88	200	200		,
		F	200	036		ä	85	35	550	950	20.0	18.8		1		90	1	1	1	1		30 30	1 .			.	ľ
4	-1	•	7		┿╾	244	~ ·			00	2	90.	423	423	42.	۱.,	٠,	-	๚๛	m m	Men	Ma	ma		Ma		ľ
ì	-1	1	21 C	1	20	75	m a ma	O R	- AU C	oy	1	7 8	100	200	42	বভা	012661	198	35	ရွိစွဲ	096600	က္ကလ္လ	싎	200	016795		
40904	001599	208095	008732	007626	9:	S,S	351	60-	019438	006170	011416	05050	011896	180	011927	112	126	18,	130	00050		000000 000020	279700	SS	100		
140	gg	ga.	Š	8	9	38	88	188	328			88	96	+ +	++	4+	4 +	400	s +	++	++	++	1 .		+ 4		
	- 1	+ +	+ •	+	+	+ +	+ 4	1	+++	9 6 6	+ +	N CO.	de.	263			η.	88	58	S S S	ag ag	5 8	SSS	35	100	2	
	8	38	Š	38	di	039	9	33	959	958	38	S S	. 1				. 1		1 _		۱	- 1	ı ı		20-		
45	4	> -	۵,	.	»~ † ·			-	200	200	70	مام	77	4	4-				ηm	Mm	-		-		ume		1
15	-1	7 C	0			ñδ n n					g S	200	011388	88	SIC.	되었	012353	85598 85599	838	000003	005341	71.	18		012627	5	Ì
572	001802	994 779	8	35	019558	019595	37	02500	276	006128	011749	ga	513	36		12	222	äã	200	ge	85	18	38	88	300	3	١
1	8	88	8	88	3	22			88		d 0 + +	90	90	90	4+	++	++	4 1		+ +	. + +	+	+ +	++	+ +	+	
	+	++	+	44	, †	+ +	+	+ +	95	# *	-1	053 4	900	-1 -	965	8	4 8	98	<u> </u> 학	S	S S S	Sec	88	85	302	5	
	ă	080	ő	ଅଟି	38	86	3	170 000	940	98 98	90					90	. 1	,		. 1		5 3 5	73	24	00	~> │	
+	• 片	3 4	4.	4	200	س 0 د			200	90	40	ماما	-		-	-		•	m					10.00 10.00		6	1
	υğ g	7		- 1 -							12	ထိုင္	011458	SE SE	8	洪	900110	010219	123	00000	167900 167900	018685	000335	011375	001719	10	Ì
1	134735	010347	186	ij.	007486	Š	339	025243	1909	020137	125210			Ä	ă;		37	198	gg		388	38	ĕ	28	00171	8	
4:	18		နှစ်	ត្	ŏğ	ŏ	90	4 4		++		، اس	+ + 4		٠ 🕈 ١	+ + +	- + -			+ + -	+ + •	+ +	+ 1	++	+ +	+	
-	4	+	10	<u> </u>	95	<u>ω</u>	9.0	1	ı	1 .		122	282	388	39	9	899	368	3 8	200	186	88	866	100	100	10	
	5	020	36	39	000	0	669 070	92	de	900	90	900			1		1	- 1		- 1		= =	773 2		. 0. 0	ا د.	
1	۽ ب	3.	7	7	~~ ~	7	7									- }	-		-	Ì							
ł				- 1	×			*					.			_].	,	-,-	- m	mm	med	mm	0 "	n a	o m	~	
	•	1	مام	ام	ev e	ام	90	100	0	, de	700	יים יים	2	0 7						띺뭐							
ŀ	7 5 5 5 5 6 6 7 6 7 6 7 7 7 8	565		10	38	15	330	9	386			020122	020212		200		0115		005/19	031331	000522	266 248	800	130	001842	8	
	133742	010565	gg	ğ	600	021151	Na Na Na Na Na Na Na Na Na Na Na Na Na N	N	Šda	05020	34	58	85	68	88		1		1	++	ō 0 + +	0 0 + +			++	+	
	•	+	+ -	⊦ +	+ •	++	+4	٠ +١ ٠	++	+ + +	+ +	+ +	• •	+ +	m=	50			있 있		925			185	300	8	
		8	គ្គខ្ល	33	036	48	Sign	3	197	300	55	223	දී ල්	88	88		200 000		- 1		00	9 5		50.1	777	7	
	ا دد		ı						-3-4	200	24	24	24		ᅜᅜ				4 F	24	2	~~	100	700	יוטע		
	_							70 اگر 10 اگر	δ ių,	o K	3 ~	യന			೭ಕ	₽В	012242	84	E 2	200	171	85		625	123	32	
	13265.	0002000	2007602	009145	+X 007146	517750	020010	024402 025705	008296 013875	019546	006054 01950	01250	02027 01122	0110	00937	116	222	115	055	357	000	8	15	01607	0019	000	
	13	äë	B	38	8	98	88	88		- 1	1	5 g	öä	o a + +	00	00	00	++		+ +	++	+	++	1 +	++	++	
		++	+	+ +		+4	+	+ + o d	++	1	6 d	12	m Q		063	965	067 068	690	060	260	20,8	88	18	800	201	125	
		98	8	035	38		20	웅공	700	6 047	040	051	053	190 3	00	00	00	20	101	3+		3	3-	30	da	4-	
	4	13	- 1		40	210	2	20	20	90	Q, cr	ત્ય ભ	ด ด		7.		 	44	m=	200	- ~	100	400	۱.	٠.	2000	
		. 1 -			-			È	0257864 008364	SE SE	ㅋㅋ	BA Ld	23					012541	010084	005602	00000		031984		006895	012081 012081 0001 <i>9</i> 7	l
	'	131407	E	007282					200 080 080 080 080 080 080 080 080 080	01390	020071	01262	02012			1	Ę	210	010084	86	SS		36	8	S 8	01200	
			1	ŏò		+	+ +) - +	++	++	++	++	+ +	++	+ 4	++	++	++	+ 1		++	+ 7	++	+ 1	++	4 + +	
		0		31	033	100	038	039	1	046 047	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55.5	90.5	85	290	198	200	999	200	200	100	96	8/8	866		555	
				0	90	000	00	00	00	00	000	4-2-4 1000	-	200	2 2 2	1	1	1	٠ يد	1	3 ·	1.	3 2	77	2	00	
		1	. >		H	4		×	1	+									H20	9 2 2 2 2 3			35	Sales Isa	PS1)	18a 170 170 170 170	
		-			ľ	3						1	=			1		1	出	当 ^{さ、}	# <u>#</u>	₹¨	_ ~	\sim	4	علق	
						占		MANIFOLD					ST	1		1.				۲.			H	-			
						ERC		ANI		1.	Z	3	Σ		1	1					a	ì	4				
١.	,				1	AETERCOLLER)	ر مر	4					THERMOSTAT			1		إيرا	d .		ACROSS ELOW METER AT FLOW METER	TURBO	TURED	FILTER	XI.	.]	
		.					02 D	ERY		ZE	TOWER	3	170	٠	1]_,	ً ۔ ا	98		g o	ACROSS FLOW M AT FLOW METER		11-		IL GALLERY		
	-	- {	. م	1	CLEANER		COOLER	GALLERY	PUMP 3	1		25	1 1		HE.	1	ᆏᆂ	BH TURBO	EXHAUST AFTER TU AIR TEST CELL	BEFORE TURB AFTER TURBO	귀	AIR CRANK CASE	EFFOR	5	13	PUMP RIF IC	
			DYNAMOTER LOAD	A BE	4	TUREO IN TUREO OUL	38			NT ENGINE	WATER	COOL ANT WATER DYNA WATER OUT	REFERENCE EATH ENGINE COOLANT	PORT	PORT	PORT PORT	되는	쿼규	AF TER CELL	A P	ပ္ပည္	Ä			- 0	10	
	1	BPM	꿈.	١.	- 13	TUREO	2	4 =	EEF ORE	- ₹	i	A L	널음			- 1			15	EE	8-	CRANK				COOL ANT	
1.			MOT		ig N	55	AF TER	NE OF			COOL ANT	COOL ANI	ENGINE	EXHAUST EXHAUST	EXHAUST EXHAUST	EXHAUST EXHAUST	EXHAUST EXHAUST	EXHAUST EXHAUST	EXHALIST AIR TES	B W		4	EXHAUST	FUEL AT	ENGINE S	COOL AN	
	Į	ENGINE	Ž	AIR		A I R	١.	된힐		38	gģ.	ġŽ	띭옹	귉돗	꿆	深	걸	なな	¥ E	ABB	AIR					2000 2000	1
	Ų	_																38			(क्षेत्र		ork				

. . . :

. .

APPENDIX D - NATO ENGINE TEST SPECIFICATIONS

NATO STANDARD ENGINE LABORATORY TEST

(GAS TURBINES ENGINES)

AFP_5

EDITION JUNE 80

CHAPTER 1

PURPOSE AND APPLICABILITY

SECTION 1-1. PURPOSE

The purpose of this document is to define a test method and standard conditions to enable all NATO countries to conduct tests using an identical method or to analyse the tests conducted in the laboratories of other NATO countries on the basis of this method.

The method described below is independent of existing national test methods, which may be used for supplementary testing.

When an engine has met the requirements of the tests under the present code, its power rating should be indicated as follows: "Power rating. . .Kw (. . .metric HP) at. . .RPM, in accordance with NATO code AEP 5. Edition June 1980."

SECTION 1-2 APPLICABILITY

These test conditions apply to all service vehicle (combat and transport) propulsion gas turbine engines with free power turbines.

NOTE: SI units will be used.

CHAPTER 2

TEST REQUIREMENTS

SECTION 2-1 - GENERAL COMPOSITION AND ORDER OF TEST

2.1.1. Engine reception.

Running-in in accordance with manufacturer's instructions.

Performance test, complete (full and part loads).

Endurance test.

Performance test, complete (full and part loads).

Disassembly, inspection and measurement.

Report.

NOTES: (1) Engine measurements may be carried out before running-in.

(2) The manufacturer is responsible for defining the runningin programme and the engine should have been run-in before it is submitted for testing.

- (3) In so far as possible, the manufacturer's drawings and technical data will be supplied with the engine, to assist inspection and measurement of components.
- (4) It is normal practice for the engine to be given a preliminary performance test immediately after receipt, to check acceptability.
- (5) The initial, if accomplished, and final inspection of the engine should be carried out by the same inspection team using the same gauges.
- 2.1.2. During performance and durability testing, the following varia-bles will be monitored:
 - a Main values
 Speed
 Torque (engine output shaft)
 - b Ambient conditions
 Temperature of ambient air
 Atmospheric pressure
 Humidity
 - c Air and gases
 Inlet air temperature
 Inlet depression
 Inlet air flow (performance test only)
 Exhaust temperature
 Exhaust back pressure
 Gas temperatures at points influencing fuel control (if required)
 - d Lubrication and cooling
 Oil temperatures and pressures
 Temperatures into and out of external coolers
 Flow rates of fluids to cooling devices external to the engire
 (for heat rejection calculations)
 Oil consumption (during endurance tests only)
 - e Fuel
 Fuel temperature
 Fuel consumption
 - f = Miscellaneous
 Smoke density
 Other parameters which influence fuel control
 Vibration

2.1.3. Regulated parameters

Inlet Air Depression * at rated power: 25 + 2,5 mbar

Exhaust Back Pressure at rated power: 20 + 2,5 mbar

Fuel Temperature at Fuel Pump Inlet: 30° C + 3° C

Inlet Air Temperature :
See Section III

* Depression differential between static atmospheric air pressure and the total pressure at the point of measurement.

2.1.4. TEST CONDITIONS

Measuring is to be done in normal and stable operating conditions.

The temperature of the air entering the engine (ambient air) is to be measured at a maximum distance of 0,15 m from the air filter inlet or, if there is no filter, 0,15 m from the air inlet nozzle. The thermometer or thermocouple must be protected against heat radiation and be located directly in the air jet. Testing must be carried out in an adequate number of positions to give a representative inlet temperature.

Once an output speed has been selected for measurement purposes, its value must not vary by more than $\pm 1 \%$ or ± 10 r.p.m. (whichever of these limits is the higher) during measurement.

The readings for brake load, fuel consumption and inlet air temperature are to be taken simultaneously, the value recorded being the average of two stabilized results, obtained in succession with brake load and fuel consumption differing by less than 2 %.

When a device fitted with an automatic starting system is used for measuring speed and fuel consumption, the duration of measurement must be at least 30 seconds; if the measuring device is manually operated, the duration must be at least 60 seconds.

The exhaust gas outlet temperature must be measured at a point downstream and less than 100 mm from the flange (s) of the exhaust manifold (s).

Lubricant temperature is to be measured at the inlet and outlet of the heat exchanger if there is one. Otherwise it must be taken preferably in the lubrication system. The measuring point will be specified in the test report.

Fuel temperature must be read at the fuel pump inlet.

Auxiliary power take-offs may be loaded and measured if desire-

2.1.5. MEASUREMENT ACCURACY

- TORQUE

The torque must be accurate within \pm 0.5 % of the highest value recorded.

- OUTPUT SPEED

Measurement must be accurate to within + 0.5 %.

- FUEL CONSUMPTION .

+ 1 % for all apparatus used.

- TEMPERATURES
 Intake air + 1°C.
- PRESSURE

Atmospheric pressure + 0.7 mbar
Air and gas pressure + 50 mbar
Induction and exhaust pressure and depression + 0.250 mbar
Pressure of other fluids + 250 mbar

SECTION 2-2 - DEFINITION OF ENGINE

Engines will be equipped only with such auxiliary equipment as is strictly essential to their operation (see table of auxiliary equipment at Annex A).

SECTION 2-3 - PERFORMANCE TEST

The performance test maximum load curve will be plotted from measurements taken at a minimum of five speed settings, one of these settings being the rated speed.

For each setting, the engine should be run for a sufficient time to allow the operating parameters to stabilize.

Part-load data is to be recorded at the same pre-selected speeds as was used for the full-load test. The part loads for each speed point are to be calculated at least for 85 %, 70 %, 50 % and 25 % of the full load at the given speed.

During this test, the smoke emission as measured on the Robert BOSCH Scale shall not exceed 4.5.

No correction factor will be applied and the test results must include air temperature and atmospheric pressure.

The inlet temperature shall be maintained as close as possible to 25°C.

SECTION 2-4 - ENDURANCE TEST

2.4.1. The endurance test duration is 400 hours, divided into four periods of 100 hours each. At the completion of each period, the engine shall be submitted to a full-load performance check.

During the endurance test, the inlet temperature will be kept as near as possible to 25° C or, when this is not practical, prevailing ambient.

- 2.4.2. Normal maintenance and adjustment will be permissible after each 100 hour test period.
- 2.4.3. Engine oil and filters may be changed after each 100 hour period.
- 2.4.4. The four 100 hour périods which make-up the endurance test are to be carried out with the fuel and lubricant defined in Chapter 3.
- 2.4.5. Each 100 hour period is to comprise ten 10 hour cycles. Each 10 hour cycle will be carried out in accordance with the programme (section 2.5).
 - 2.4.6. Data will be recorded during the last five minutes of each of the sub-cycles included in the basic 10-hour cycle, with the exception of sub-cycles 3, 4, 7, 8, 10, 11.
- 2.4.7. No interruptions are permitted during any of the sub-cycles, but the engine may be switched off on completion of any sub-cycle.
- 2.4.8. One-hundred percent power (load) will be governed by maximum fuel control setting, not adjusted to published maximum power.

SECTION 2-5 - PROGRAMME OF 10 HOUR CYCLE

Périod	Rated Speed %	Rated Load %	Duration (hours)
1	idle (1)	Idle (1)	0,5
2	100	100	1
3	50	100	1 "
4	Stop		0,25
5	70	100	1
6	Idle	Idle	0,5
7	Idle ← → 100 2 min 3 min	Idle ←──→100	2
8	Stop		0,25
9	100	100	. 1
10	Stop	. J	0,25
11	Idle ← → 100 2 min 3 min	Idle ← 100	2
12	Idle	Idle	0,25
		Total	10

At least 5 times during each 100 hour period, the engine will be shut down for a minimum of δ hours.

(1) Manufacturer's published idle or as specified by vehicle installation.

ANNEX A

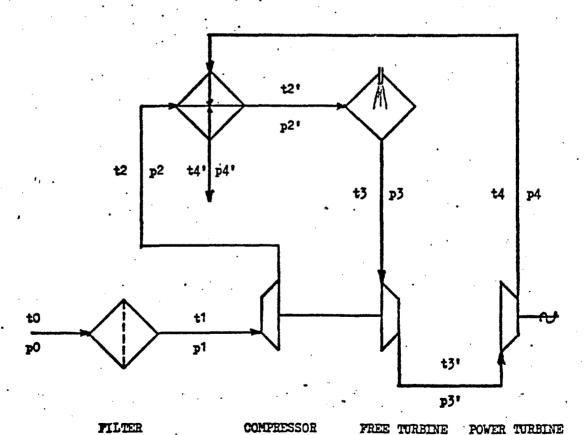
DETAILS OF PRODUCTION AUXILIARY EQUIPMENT

Inlet System Air Filter System	
Inlet Silencer	Optional
Exhaust System	
Piping	
Silencer	Task Banch Favinment
Exhaust Pipes	Test Bench Equipment
Fuel Feed Pump	Optional
Fuel Injection Equipment	-
Prefilter	
Filter	Yes, or test bench equipment
Electrical Equipment	· If necessary

INFORMATION TO BE INCLUDED IN TEST REPORT

A complete report covering all the tests, servicing, maintenance, rectification of faults and the condition of the engine at the strip examination including the measurements of the principal wearing parts will be compiled.

The report will also include the following:


- 1. A statement of the build standard of the engine, with drawings and a parts list.
- 2. Photographs of the engine from four different views.
- 3. Photographs of the test installation at least four different views.
- 4. A list of equipment fitted to the engine.
- 5. Sample test sheets and a summary with a list of faults and the remedial action taken.
- 6. An engine condition report at end of test with photographs of the condition of major parts such as combustion chamber. compressor wheels and diffusors, turbine wheels and nozzles, reduction gear with any other components of interest.
- 7. A history chart of lubricating oil used during the endurance tests.
- 8. Analysis of new and used lubricating oil, the latter to be taken at approximately 100 hours intervals.
- 9. Fuel analysis.
- 10. Any other relevant data.

SCHEMATIC DIAGRAM

tO and pO : embiente temperature and pression t1 and p1 : temperature and pression after filter t2 and p2 after compressor t2' and p2' after heater t3 and p3 after combustion chamber ' t3' and p3' after free turbine . t4 and p4 after power turbine t4' and p4' s exhaust gas temperature and pression

HEATER

COMBUS TION
CHAMBER

air

- ga:

NATO UNCLASSIFIED

NATO STANDARD ENGINE LABORATORY TEST

(DIESEL and GASOLINE ENGINES)

AEP-5

EDITION JUNE 80

NATO UNCLASSIFIED

CHAPTER 1

PURPOSE AND APPLICABILITY

SECTION 1-1 - PURPOSE

The purpose of this document is to define a test method and standard conditions to enable all NATO countries to conduct tests using an identical method or to analyse the tests conducted in the laboratories of other NATO countries on the basis of this method.

The method described below is independent of existing national test methods, which may be used for supplementary testing.

When an engine has met the requirements of the tests under the present code, its power rating should be indicated as follows: "Power rating Kw (... metric HP) at r.p.m., in accordance with NATO code AEP 5. Edition June 1980".

SECTION 1-2 - APPLICABILITY

These test conditions apply to all service vehicle (combat and transport) propulsion Diesel and gasoline engines.

NOTE: SI units will be used.

CHAPTER :

TEST REQUIREMENTS

SECTION 2-1 - GENERAL COMPOSITION AND ORDER OF TEST

2.1.1. Engine reception.

Running-in in accordance with manufacturer's instructions.

Performance test, complete (full and part loads).

Endurance test.

Performance test, complete (full and part loads).

Disassembly, inspection and measurement.

Report.

NOTES: (1) Engine measurements may be carried out before running-in.

(2) The manufacturer is responsible for defining the runningin programme and the engine should have been run-in before it is submitted for testing.

- (3) In so far as possible, the manufacturer's drawings and technical data will be supplied with the engine, to assist inspection and measurement of components.
- (4) It is normal practice for the engine to be given a preliminary performance test immediately after receipt, to check acceptability.
- (5) The initial, if accomplished, and final inspection of the engine should be carried out by the same inspection team using the same gauges.
- 2.1.2. During performance and durability testing, the following variables will be monitored:
 - a Main values
 Speed
 Torque (engine output shaft)
 - Ambient conditions
 Temperature of ambient air
 Atmospheric pressure
 Humidity
 - c Air and gases Inlet air temperature Induction or cylinder inlet depression Inlet air flow (performance test only) Air temperature and pressure in the inlet manifold Exhaust temperature Exhaust back-pressure Gas temperatures at points influencing fuel control (if required)
 - d = Lubrication and cooling Oil temperatures and pressures Temperatures into and out of external coolers Flow rates of fluids to cooling devices external to the engine (for heat rejection calculations) Oil consumption (during endurance tests only)
 - Fuel temperature
 Fuel consumption
 - f Miscellaneous
 Blow-by
 Smoke density

2.1.3. Regulated parameters

Outlet liquid coolant temperatures: 96°C + 3°C

Induction depression at rated power:

25 ± 5 | mbar

Exhaust back pressure at rated power: 40 mbar + 5

Fuel temperature at injection pump inlet: 30°C + 3°C

2.1.4. TEST CONDITIONS

Measuring is to be done in normal and stable operating conditions.

The temperature of the air entering the engine (ambient air) is to be measured at a maximum distance of 0,15 m from the air filter inlet or, if there is no filter, 0,15 m from the air inlet nozzle. The thermometer or thermocouple must be protected against heat radiation and be located directly in the air jet. Testing must be carried out in an adequate number of positions to give a representative inlet temperature.

Once an output speed has been selected for measurement purposes, its value must not vary by more than $\pm 1\%$ or ± 10 r.p.m. (whichever of these limits is the higher) during measurement.

The readings for brake load, fuel consumption and inlet air temperature are to be taken simultaneously, the value recorded being the average of two stabilized results, obtained in succession with brake load and fuel consumption differing by less than 2 %.

When a device fitted with an automatic starting system is used for measuring speed and consumption, the duration of measurement must be at least 30 seconds; if the measuring device is manually operated, the duration must be at least 60 seconds.

The exhaust gas outlet temperature must be measured at a point downstream and less than 100 mm from the flange (s) of the exhaust manifold (s).

Lubricant temperature is to be measured at the inlet and outlet of the heat exchanger if there is one. Otherwise it must be take preferably in the lubrication system, or, failing this, in the crank case. The measuring point will be specified in the test report.

Fuel temperature must be read at the injection pump inlet, or carburettor inlet.

Cooling condition for air cooled engine will be in accordance with manufacturers specification.

Auxiliary power take-offs may be loaded and mesured if desired

2.1.5. MEASUREMENT ACCURACY

- TORQUE

The torque must be accurate within \pm 0.5 % of the highest value to be measured.

- OUTPUT SPEED

Measurement must be accurate to within + 0,5 %.

- FUEL CONSUMPTION

+ 1 % for all apparatus used.

- TEMPERATURES
 Intake air + 1°C.
- PRESSURE

Atmospheric pressure + 0.7 mbar

Air and gas pressure + 50 mbar

Induction and exhaust pressure and depression + 0,250 mbar

Pressure of other fluids + 250 mbar

SECTION 2-2 - DEFINITION OF ENGINE

Engines will be equipped only with such auxiliary equipment as is strictly essential to their operation (see table of auxiliary equipment at Annex A).

SECTION 2-3 - PERFORMANCE TEST

The performance test maximum load curve will be plotted from measurements taken at a minimum of five speed settings, the fifth setting being the rated speed.

For each setting, the engine should be run for a sufficient time to allow the operating parameters to stabilize.

Part-load data is to be recorded at the same pre-selected speed as was used for the full-load test. The part loads for each speed point are to be calculated at least for 85 %, 70 %, 50 % and 25 % of the full load at the given speed.

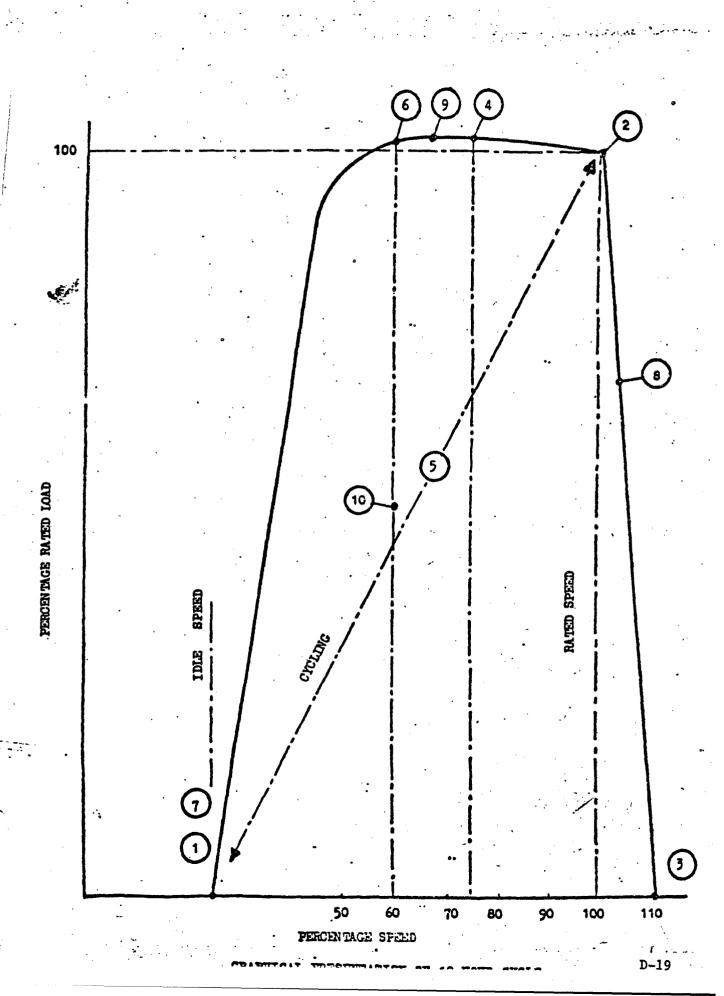
During this test, the smoke emission as measured on the Robert BOSCH Scale (or equivalent) shall not exceed 4.5.

No correction factor will be applied and the test results must include air temperature and atmospheric pressure.

The inlet air temperature shall be maintained as close as possible to 25°C .

SECTION 2-4 - ENDURANCE TEST

2.4.1. The endurance test duration is 400 hours, divided into four periods of 100 hours each. At the completion of each period, the engine shall be submitted to a full-load performance check.


- 2.4.2. Normal maintenance and adjustment will be permissible after each 100 hour test period.
- 2.4.3. Engine oil and filters shall be changed after each 100 hour period.
- 2.4.4. The coolant outlet temperature is to be held at 96°C + 3°C or a higher temperature if proposed by the manufacturer. The coolant is to be water plus antifreeze in egal volume.
- 2.4.5. The engine oil temperature is to be measured in the lubrication system. The temperature measurement location shall be specified.
- 2.4.6. The four 100 hour periods which make up the endurance test are to be carried out with the reference fuel defined in Chapter 3.
- 2.4.7. Each 100 hour period is to comprise ten 10 hour cycles. Each 10 hour cycle will be carried out in accordance with the programme (section 2-5).
- 2.4.8. Data will be recorded during the last five minutes of each of the sub-cycles included in the basic 10 hours cycle, with the exception of sub-cycle 5.
- 2.4.9. No interruptions are permitted during any of the sub-cycles, but the engine may be switched off on completion of any sub-cycle.

SECTION 2-5 - PROGRAMME OF 10 HOUR CYCLE

Sub Cycle	% Rated Speed	% Load (3)	Duration in hours
1	IDLE	0	ł
. 2	100	100	2
3	governed speed (1)	0	*
4	. 75	100	1
5	IDLE 100	0←→100 4 MIN 6 MIN	2
6	60	100 ·	1
7	IDLE	0	i .
8	governed speed (2)	70 (3)	± .
9	Max torque speed	100	2
10	60	50 (3)	1
	•	Total	10

NOTES :

- (1) The speed shall be that attained with the engine at full throttle and with minimum load (residual brake load).
- (2) The speed shall be the steady speed of the engine at full throttle and 70 % load.
- (3) Part loads (70 and 50 %) shall be taken from the initial performance test.

CHAPTER 3

FUELS AND LUBRICANTS AND ANTIFREEZES

Engines are to be tested on Reference Fuels and Lubricants and antifreezes as specified by the relevant NATO Authority.

CHAPTER 4

DEFINITION OF TEST FAILURE

A major failure is a failure of any part or component of the engine assembly that leads to a final stoppage of the test or that brings about as loss of power which cannot be rectified to give at least 95 % of rated power.

Any major failure will lead to termination of the test and any retest must start at 0 hour.

Major failures and corrective action are to be reported to the proper National Authority.

- A minor failure is a defect which leads to a loss of power or degradation of the operation of the engine and which it is possible to remedy within the scope of normal maintenance and adjustment. If 95 % of the rated power cannot be obtained after normal maintenance then the test will be terminated. The minor failures and the measures taken to overcome them must be included in the report.
- The suitability of an engine for NATO AEP5 Approval is to be the responsibility of the National Authorities after completion of the 400 hours test and consideration of the final condition of the engine.

DETAILS OF PRODUCTION AUXILIARY EQUIPMENT

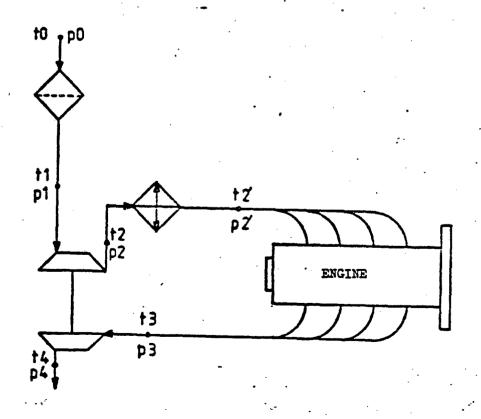
(To be included as applicable)

	<u> </u>
Inlet system Inlet manifold	Yes Optional
Exhaust system Manifold	Yes
Piping	Test bench equipment
Fuel feed pump	Yes
Carburettor	Yes (details of ad- justment will be specified)
_	
Ignition system	
Distributor	Yes
Spark-plugs	Yes
Coils	Yes
Suppressor	Yes
Fuel injection equipment	
Prefilter	Yes or lost bench equipment
Pump	Yes
High-pressure pipes	Yes D-21
Injector	V

Liquid cooling equipment Radiator	No Yes Yes
Air cooling equipment Streamlining Blower Temperature regulating device	Yes Yes Yes
Electrical equipment	If necessary
Supercharging equipment Compressor driven directly or indirectly by the engine and/or exhaust gas	Yes Yes Yes

INFORMATION TO BE INCLUDED IN TEST REPORT

A complete report covering all the tests, servicing, maintenance, rectification of faults and the condition of the engine at the strip examination including the measurements of the principal wearing parts will be compiled.


The report will also include the following:

- 1. A statement of the build standard of the engine, with drawings and a parts list.
- 2. Photographs of the engine from four different views.
- 3. Photographs of the test installation at least four different views.
- 4. A list of equipment fitted to the engine.
- 5. Sample test sheets and a summary with a list of faults and the remedial action taken.
 Full load performance data will be show in the format indicated.
- 6. An engine condition report at end of test with photographs of the condition of major parts such as pistons, bearings, valves, camshafts, crankshafts, cylinder bores together with any other components of interest.
- 7. A history chart of lubricating oil used during the endurance tests.
- 8. Analysis of new and used lubricating oil, the latter to be taken at approximately 100 hours intervals.
- 9. Fuel analysis.
- 10. Any other relevant data.

E	NGINE	Type:		N°:		,	Place date		
	F INIT	ULL CHA	RGE PE	REORMANO	ES		Reference	:	
FU	EL:		011	type:	,		BRAKE typ	e:	
Vo	lume mas	S:	kg/dm³	grade:				·	
AMBI-	PO •C								
ENT	p0 mber								
P	n r,pm								
TYZE Z ZOTIZITO	M mdaN								·
Ĥ	p kw								
1	pme bar								
	Es/asfc g/kw.h								
FUEL	Q.c mm³ cycle								
<u></u>	qm kg./h					<u></u>			
OIL	#H °C		·						
	pH bar								
X41-EX	te °C					<u> </u>			
Ř						<u></u>			
	f1 °C								
Ņ	12 °C					-			
E	p 2 ber								
	12. •€		·						1
	p2-p2 mbar								;
	13 •0							·	
EXH	p3 bar								
EXHAUST	1.6 0.0				<u> · </u>				
Ť	g4-p0 mbar Smake Bosch							_	
						<u> </u>			
BLOW	- BY CT / F.A		L		لـــا	<u> </u>		_	
						•			
1	•			D-	24			•	The chap

DEFINITION OF SHORTS

							•
•	t0	2	ambient temperature	•	t1		air temperature after
• :	p 0	:	ambient pressure		•		filter (or compressor inlet)
• 1		:	engine speed		-		inlet depression
. 1	M .	8	engine torque	•	12	8	compressor discharge tempera-
	P	•	output power				ture
-			brake mean effective pressure	•	p2	:	compressor discharge pressure
•	Cs/bsfc	1	specific fuel consumption	•	t2*	\$8	ir temperature after charge cooler
. (Q _C	:	volume of fuel per injection		-2 -21		manage of sames charge
• (đư	1	mass fuel flow per hour	•	be - he.	*	pressure of across charge cooler
•	tH	:	oil temperature	•	t 3		exhaust gaz temperature
			oil pressure		_		(turbine inlet)
	-			_	p3		exhaust gaz pressure
•	te	:	coolant temperature into engine	•	βJ	•	(turbine inlet)
• •	ts	:	coolant temperature out of engine	•	t 4	:	turbine discharge temperature
				•	p4 - p0	:	Exhaust back pressure

APPENDIX E

LUBE OIL SPECTROGRAPHIC ANALYSIS

+ 1	#-	OIL ANAL	YSIS RE	QUEST	Ī		KEYPUNCI CODE		
100	IL ANALY	SIS LAB Ne	w Cumbe	rland	STSG	P-PE	1-3		
. Ez.	A JOR CO	MMAND TA	COM, Wa	rren,	MI 4	8090	4		
	<i>AAD</i>	5-10							
		Michiga LVTh-903			100-	-	11-14		
	ENT SER.					·	15-20		
END ITE	M MODEL	HULL NO.							
END ITE	M SER. NO)./EIC							
DATE SA	MPLE TA	KEN (Livy, Ma		OCAL TI	ME SAI	MPLE	21-24		
Houns	MILES SING	r NATO Te	est ·				25-29		
HOUPS	ALES SIN	CE OIL CHAN	GE .				30-33		
	FOR SAM	PLE LAB	D CEL		OTHER Specify!		. *		
		GIL ADDED SINCE LAST SAMPLE (Pts, Qts, Gals)							
	1 5 2								
VCLION.	TAKEN	AMPL	E -	5	<u></u>				
ACTION		AMPL EN A	E -	5	ें 5ैं।	#2	S		
		AMPL OF F	E -	5 26.	5. 4.N	#2 CE	\frac{1}{2}		
DISC TEF	ANT ITES	AMPL DE A DE E	E - T /6 FND	5 26. UR/	5 4 N	FR.	ST.		
HOW FOL	ANT ITES	AMPLE TE		E .		HZ. CE	0#C(34		
HOW FOL	ANT ITE	SAMPLE TE	MPERATUR Colo ectrogr	aphic	IL-	01L 2/ VSis	0#C(34)		
HOW FOL	ANTITES FUNCTION IND IND IND IND IND IND IND IND IND IN	SAMPLE TE HOT Sample sp hour tes	MPERATUR Colo ectrograts. Sa	aphic mples	anal will	ysis :	o#C(34) is require aken every		
HOW FOLHOW TAKE TO DESIGN NAME TO NAME	ANTITES FUNCTION IND IND IND IND IND IND IND IND IND IN	SAMPLE TE PORT SAMPLE SP hour tes complete o	MPERATUR Colo ectrograts. Sa	aphic mples ge aft	anal will	ysis :	0#C(34)		
HOW FOLHOW TAKE TO DESIGN NAME TO NAME	ANTITES FUNCTION IND IND IND IND IND IND IND	SAMPLE TE Hor Sphour testomplete o	MPERATUR Colo ectrograts. Sa	aphic mples ge aft	anal will er e	ysis :	o#C(34) is require aken every		
HOW FOL HOW TAK IT DRAIN HEMARK LOT NA 25 hou of end	ANTITES FUNCTION IND IND IND IND IND IND IND	sample TE Hor sample sp hour test tomplete of FOR L.	MPERATUR Coco ectrogr ts. Sa il chan	aphic mples ge aft	anal will er e	ysis :	o#C(34) is require aken every		
HOW FOL HOW TAK IT PAAIN HEMARK LOT NA 25 hou of end	ANTITES FUNCTION KEN TO TUBE S Oil : TO 400 rs. Courance.	sample TE Hor sample sp hour test tomplete of FOR L.	mperatur n colo ectrogr sts. Sa cil chan AB USE (aphic mples ge aft	anal will er e	ysis :	o#C(34) is require aken every		
HOW FOLHOW TAPEL PROPERTY NA 25 hou of end	ANTITES FUNCTION TO TUBE S Oil : TO 400 rs. Courance.	SAMPLE TE HOT SAMPLE SP HOUR tes complete comple	mperature of color of	aphic mples ge aft	anal will er e	ysis be to very	is require aken every 100 hours		
HOW FOLHOW TAKEN POWER P	ANTITEM FUNCTION IND CEN IN TUBE S 011 : TO 400 rs. Courance.	SAMPLE TE HOT SEMPLE SP HOUR tes complete comple	mperature of color of	aphic mples ge aft	anal will er e	ysis be to very	is require aken every 100 hours		

DD 1 FORM 2026 PREVIOUS EDITION WILL BE USED

	0	IL ANAL	YSIS RE	QUE	ST		KEYPUNCH CODE		
то	OIL ANALYSI	SLAS Nev	v Cumber	lan	d ST	SGP-PE	1-3		
F	MAJOR COMM	AND TAC	COM, War	ren	, MI	48090	4		
R O M	OPERATING A DRSTA-RGI Warren, M	RD Mr. F	l. Rimpe	ela			5-10		
EQUIP	EQUIPMENT MODEL ARL -903 Engine								
EQUIP	MENT SER. NO	•					15-20		
END I	TEM MODEL/H	JLL NO.							
END I	TEM SER. NO./E	EIC							
DATE	SAMPLE TAKE	N (LNy, Mo.		OCAL AKEN		SAMPLE "	21-24		
HOÙR	s, MILES SINCE 400 Hour	NATO Te	st			. .	25-29		
HOUR	S/MILES SINCE	OIL CHANG	E			<u>2</u> 2	30-33		
	ON FOR SAMPL	E LAB	TES D CEL	Y	0₹) □ (%)		34		
OIL A	DOED SINCE LA	ST SAMPLE	(Pis, gis.)	ials)	zKi	-NA			
AUTIC	IN TAKEN	7115	- 16)			- Eus			
กเรต	CFANT ITEM	501	FOUR	5	ול	ENL	TAANCE		
HOW M	ALFUNCTION	ED .	•		•	·55			
HOW F		LAB REQUE	ST 🗇 A	AIR O	R GRO	UND CREW			
HOW T	AKEN !	HOT	MPERATUR	E		19E OIL L-2/04	17/30 W		
for 25 h	eks Oil sa NATO 400 h	our tes	ts. Sa	mple	c ar	nalysis i .ll be ta r every l	s required aken every 100 hours		
			AB USE C)NL	Υ	1:3			
SAMPL	E RESPONSE T	IME					39-40		
FE 41	43 AG 44-46	AL 4749	CH 50-52	cu	\$3.55	MG 56-58	NI 59-61		
2/	-64 SI 65-67	SN 60-70	TI 71-73	MO	74-76 2				
LABR	ECOMMENDAT				• •	·	77-78		
SAMP	LE NO. 28	SIGNAT	URE		FILE 79	MAINT	DATA SEQ 80		

DD 1 NOV 77 2026 PREVIOUS EDITION WILL BE USED

	(OIL ANA	LYSIS RE	QUI	EST		KEYPUNCH CODE
то	OIL ANALYS	IS LAB NO	w Cumbe	rlar	nd Si	rscp-pe	1-3
FR	MAJOR COM	MAND TA	lCOM, Wa	rrer	n, M	48090	4
O M	OPERATING DRSTA-RO Warren,	RD Mr.	R. Rimp	ela			5-10
EQUIP	"Cummins					فالمتلاط ليستحد ستناهد	11-14
EQUIP	MENT SER. N	Э.					15-20
END I	TEM MODEL/H	ULL NO.					
EN0 17	TEM SER. NO./	EIC					
DATE	SAMPLE TAKE	EN (Day, Al		OCAL		SAMPLE	21-24
HOUR	400 Hour	NATO T	est				25-29
L	S/MILES SINCI		IGE				10-33
(∏ inc		REQUEST			OT (Spe		.3 5
	DFD SINCE L	AST SAMPL	E (Pts, Qts, C	(ials)			جننع:
ACTIO		1	11/	41	KI	VA	1=
DISCRE		65	Hol	LR.	<u>s</u>	OF	
HOW M	AL FUNCTION	W/D-1	/	XC		, co	
HOW F	D	LAB REQU	EST 🗆	AIR O	RGRO	UND CRE	w
T WOH	AKEN N 🔲 TUBE	SAMPLE TE	MPERATUR	1 E	Mil	-2/01	16 (30mt)
for N 25 ho	1004 OTA	nour tes	sts. Sa	mple	ic ar es wi	nalysis Ill be	is require taken every 100 hours
			AB USE ()NL	Y	17	
SAMPL	E RESPONSE T	IME					39-40
48	43 AG 44-46	AL 47-49	CR 50-52	cu //	53-55	MG 56.5	1 121 59-61 E
FB 62-6	4 SI 65-67	SN 88-70	TI 71-73	МО	74-76		
	COMMENDAT					L	77-78
SAMPL	E NO.	SIGNAT	URE		FILE 79	MAINT	DATA SEQ

DD 1 NOV 77 2026 PREVIOUS EDITION WILL BE USED

<u></u>										
	. 0	IL ÁNAL	YSIS RE	QUE	ST		KEYPUNCH CGDE			
то	OIL ANALYSI	s LAB Ne	w Cumbe	rlan	d ST	SGP-PE	1-3			
F	AMOD ROLAM	AT DHA	COM, Wa	rren	, MI	48090	4			
R O M	operating (DRSTA-RG Warren,	RD Mr.	R. Rimpe	ela	-		5-10			
EQUIP	EQUIPMENT MODEL (APL-903 Engine									
	MENT SER. HO						15-20			
END I	TEM MODEL /H	ULL 110.	·							
END I	TEM SER, NO./	FIC	······································							
DATE	SAMPLE TAKE	N (IMY, Mo		OCAL AKEN		SAMPLE	21-24			
HOUR	5/19 LESTINCE	NATO Te	est				25-79			
HOUR	S/MILES SINCE	OIL CHAN	GE				30 33			
neas:	ON FOR SAMPL	E LAB	TES D czi	7 .L	OTA (Spe		34			
OIL AI	DOFO. SINCE L	グウント			<i></i>	1 2	35-34			
ASTIC	in Theh!	1	- 6	-	1	100	217			
DISCR	200	HPS	01-	K	MI	THRA	111-1-			
HOWM	ALFUNCTION	D				G ~				
HOWF		LAD REQU	EST CI	C 412	R GRO	UND CREW				
HOWT	AKEN !		MPERATUR			PE OIL -2/046	1204			
REMAI	aks Oil se	mple sp	ectrogr	aphi	c ar	alvsis i	s require			
for	NATO 400 h	our tes	its. Sa	mple	es wi	.ll be ta	aken everv			
of er	ours. Com ndurance.	plete o	il chan	ge s	_	every] 37/=:	100 hours			
-		FOR L	AB USE C	NI.						
SAMPL	E RESPONSE T	IME					39-40			
FE 41	43 AG 44-46	AL 47-43	CR 50-52	cu	53-55	MG 56-53	NI 59-61			
PH 62	0 0 64 SI 65-67	SN 49-70	71 71-72	WO.	74-76	948				
40		0	O	\ \ \ \ \ \ \						
-	ECOMMENDAT	ION					77-78			
		والمتوادي		·						
SAMP	RO.	SIGNAT	URE		71LE	MAINT	DATA SEQ 89			

DD I NOV 77 2026 PREVIOUS EDITION WILL BE USED

STAMPLE 5	SAMPLE TAKENAT 136.5 HRS.	BA CD MN MO V ZN 000 000 002 001 022 421		SAMPLE 6	BA CD MN MO V ZN 000 000 000 002 011 512		SAMPLE SAMPLE TAKEN AT MOVES	BA CE MN MO V ZN 000 000 000 004 500		SAMPLE 84MPLE 8	BA CD MN MO V ZN 000 000 002 000 024 438
BURN AND PRINT OIL ANALYSIS	NUMBER DATE TRANSIT OSOH OSOC 8 0177 3153 00 0127 000	FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 023 000 000 000 006 006 809 002 002 014 004 002 000 183 000 000 002 001 022 421	EURN AND FRINT	NUMBER DATE TRANSIT OSOH OSOC 8 0178 3153 00 0150 000	73 73,	EURN AND FRINT	NUMBER DATE TRANSIT OSOM OSOC (0.779 3153, 00 01.77 000	FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 048 000 000 000 010 011 934 003 030 034 011 000 150 000 000 000 000 024 500	BURN AND PRINT	NUMBER DATE TRANSIT 0504 050C (0180 3153 00 0200 000	FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 063 000 000 000 012 016 948 003 003 040 005 000 000 127 000 000 002 000 024 438
JAIL. BURN	AP TYPE COMP SER NG 36.9LIH	FE AG AL BE CR 023 000 000 000 006	LOCAL. BURN	COMP TYPE COMP SIER DIENG 36.9LIH	FE AG AL BE CR 034 000 000 000 007 6	LOCAL. BURN	COMP TYPE COMP SER DENG 36,9LIH	FE AG AL BE CR 048 000 000 000 010 4	LOCAL. BURN	COMP TYPE COMP SER DENG 36.9LIH	FE AG AL BE CR 063 000 000 000 012

	C	IL ANA!	YSIS RE	QUES	5 T			KEYPUNG	
TO	CIL ANALYSI	SLAB NO	w Cumbe	rland	i ST	SGP-	FE	1-3	
F	MAJOR COM	AT GHAN	COM, Wa	rren	MI	480	90	4	
R O M	D 28	5-10							
EQUIP	<u> </u>	11-54	~~`[
7	MENTSEE AC							15-20	
	EN HOOCETH				·		-		
4 1101	EM SER NO	FIC			******				
DATE	SAMPLETORE	YF, Huy, Mi)., }'r) L	OCAL	TIME	SAMP	LE	21-24	
ночя	SAMPLES SINCE	NATO T	n. est					25-29	-
	S/MILES SINCE					·	چ	10:34	
PEASO	N FOR SAMPL	E LAN	CI CEL	13 LL (יקר! [cdý)	2	35	
	DOEG SINCE L					,		35-35	
ACTIO	MACE	IPIF	-9			;	:		-
72	KEN AT	226	5 11	BUR	· C	AF		 ,	
HOUNK	DURA	WCF		<u>د تبعد تم</u>		•			_
HOWF	טאניס	LAS REQU	EST ()	AIR OR	GRO	UND	REW		
HOW T	AKEN	SAMPLE TE	MPERATUR	RE			2/0	7720/201	
	es Oil sa		ectrogr		<u>TIL</u>	nalv:	sis i	#CBOU	
for l	NATO 400 Ł	our tes	sts. Sa	mple	s wi	.11 1	oe ta	aken ever	ryl
of er	ours. Com durance.	brete c	oil chan	igo a	fter	. eve	ery l	00 hours	3
-		FOR L	AB USE (ONLY					닉
SAMPL	E RESPONSE T			22		,		39-40	ヿ
FE 41	43 AG 44-45	AL 47-49	CR 50-32	CU S	3-55	MG	\$6-54	NI 59-61	7
21	0_	2	6	6		20	<u> </u>	3	_
10	51 3 5-47	3N 84.70	0	3	4-75				.
LAS RI	ECOMMENDAT	ION	<u> </u>	·				77-78	٦
SAMP	LE NO.	SIGNA	TURF		FILE	E MAIR	4T	DATA SEQ	\dashv
- Series	10		. 476	1	79		••	80	

DD , FORM: 2026 PREVIOUS EDITION WILL BE USED

	(OIL ANA	LYSIS RE	QUI	EST		KEYPUNCH CODE		
10	OIL AHALYS	is the Ne	M Crimpe	rla	nd Si	SGP-PE	1-3		
F	MAJOR COM	MAND TA	COM, Wa	rre	1, MI	48090	4		
R O M	O OPERATING ACTIVITY (Include ZIP Code/APOI DODAAD								
EQUIP	EQUIPMENT MODEL/ABL-903 Engine 3%								
EQUIP	EQUIPMENT TER HO								
END.L	EN MODELYH	ULL NO.							
Tro.ii	EM SER NO	EIC							
a all	SAMPLE TAKE	N) (Luy, M	9., YP) L	OCAL		SAMPLE	21-24		
HOUR	400 Hour	OVERHAL T CTAN	est			·	25-29		
	S/MILES SINCI	محمد محال المساحد المساحد الم				. , ≤:	30-33		
	N FOR SAMPL	E LAB	O cri	37	OT!	LER -	34		
	DED SINCE L					CO.	35.36		
ACTIO	N TAKEN S	4MP/	FI	1					
77	KEKI	112	50 H	95	01.				
HOWN	シング	ANCE		Pa,447		,			
HOW F		LAB REQUI	EST []	AIR O	RGRO	UND CREW			
HOW T			MPERATUI			YPE OIL	12 30 W		
NEMAR	NO TURE KS Oil Sa ATO 400 P	ample sp	ectrorr	aph.	ic ar	alysis i	is required		
25 ho	urs. Con durance.	mplete c	il chan	ge a	after	every	100 hours		
		FOR L	AB USE (
SAMPLE	E RESPONSE T	IME		25	3/	7.5	39-40		
27	41 AG 44-46	AL 47-49	CR 80-52	cu	53-55	MG \$6.58	NI 59-41		
PB 62-6	4 SI 85-67	SN 64-70	.	MO	74-76				
LAB RE	COMMENDAT	lon	0	ات.	· · · · · · · · · · · · · · · · · · ·		77-78		
SAMPL	ÖĞ	SIGNAT	TURE		FILE 79	MAINT	DATA SEQ		

DO , NOV 77 2028 PREVIOUS EDITION WILL BE USED

OIL ANALYSIS REQUEST						KEYPUNCH CODE	
то	TO OIL ANALYSIS LAB New Cumberland STSGP-PE					1-3	
F	MOD ROLAM	MAND TA	COM, Wa	rren	, MI	48090	4
ROM	DRSTA-RG Warren.	RD Mr.	R. Rimp	ela			5-10
EQUIP	MENT MODEL CUMMINS					30	11-14
EGUIPMENT SER HO						15-20	
END I	EM MOCELVH	ULL NO.					
	em seb. no/						
	SAMPLE TAKE			LOCAL		SAMPLE	21-24
	400 Hour						25-29
**	S/MILES SINCE		GE		-		30-33
() AC		- PEQUEST		ST LL	OTI Ope	ofy) C	34.,
OIL A	OIL ADDED SINCE LAST SAMPLE (Pss, Qts, Gals)					35-36	
"SAMPLE 11							
nice.	AKEN	1 47	27	سا	5_	4RS	1.1
HOW FOUND							
HOW T		LAB REQU				UND CREW	
[] DRAI	N' TUBE	HOT	Cort		MIL	-1-2/14	C/4/1.30
for N 25 ho	remains Oil sample spectrographic analysis is require for NATO 400 hour tests. Samples will be taken every 25 hours. Complete oil change after every 100 hours of endurance.						
FOR LAB USE ONLY							
SAMPLE RESPONSE TIME					39-40		
36	43 AG 44-46	AL 47.49	CR \$0-12	CU /	\$3-55 O	MG 85-38	NI 59-61
PB 42-	51 65-67	SN 88-70	1 _		14.76		
17 4 19 0 4					77-78		
SAMPL	SAMPLE NO. SIGNATURE FILE MAINT				DATA SEQ		

OD 1 NOV 77 2026 PREVIOUS EDITION WILL BE USED

OIL ANALYSIS REQUEST					KEYPUNCH CODE	
то	TO OIL ANALYSIS LAB New Cumberland STSGP-PE					1-3
F	MAJOR CO	AT CHUMN	COM, War	ren, MI	48090	4
R O M	DRSTA-	g ALTIVITY PORD Mr. , Michiga	R. Rimpe	la		5-10
EQUIP		3'4MA-903		984		11-14
EQUIPMENT SER MO.:						15-20
TABI	EN MODEL	HULL NO.				
Tell)	EM SEA N	T:/EIC			· · · · · · · · · · · · · · · · · · ·	
DATE	SAMPLETA	KEN HAIV, ME		GALTIME REJ.	SAMPLE	21-24
HOUP	100 Hor	ice overhal	est			25-29
HOUR	WILESSIN	ICE OIL CHAN	GE			36-33
	THEOR SAM	PLE LAS	TEST CELL	OTA (Spe		3417
OIL ADDED SINCE LAST SAMPLE (Prs. Qrs. Gals)						15.35
ACTIOS AMPLE 12						
77	KEN	AT	300	HOU	RS	1
OF ENDISRANCE						
HOW FOUND LAB REQUEST D AIR OR GROUND CREW						
HOW T	•	SAMPLE TE	MPERATURE		YPE OIL IAL	10 30 m
HEMARKS Oil sample spectrographic analysis is require						
25 hc	for NATO 400 hour tests. Samples will be taken every 25 hours. Complete oil change after every 100 hours of endurance.					
	FOR LAB USE ONLY					
SAMPL	SAMPLE RESPONSE TIME					37-40
FE 41.	43 AG 44	46 AL 47-49	CR 50-52	/ 3	MG 86-58	NI 59-61
PR 62-	51 65-6			MO 74-75	0	
LABRE	24 4 0 0 3					77-78
					•	
SAMPL	SAMPLE NO SIGNATURE FILE MAINT				DATA SEQ 80	

DD , NOV 77 2026 PREVIOUS EDITION WILL BE USED

UT.JBZ

SAMPLE SAMPLE 11 F TAKEN AT 376,54RS FE AG AL BE CR CU MG NA NI FB SI SN TI B BA CD MN MO V ZN 036 000 004 000 010 638 004 003 017 004 019 000 099 000 000 000 004 013 NUMBER DATE TRANSIT 0S0H 0S0C 0098 3174 33 0000 276 COMP TYPE COMP SER

SAMPLE SAMPLE 12 HRS FOR THES NUMBER DATE TRANSIT OSOH OSOC 0000 300 23 3174 6600 COMP TYPE COMP SER **VTA903** DENG .

FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MU V ZN 052 000 004 000 011 013 800 004 003 024 004 000 000 090 000 000 000 003 029

SAMPLE SAMPLE 10 TAKEN AT 250 HRS NUMBER DATE TRANSIT OSOH OSOC 0000 250 33 3174 0100 COMP TYPE COMP SER DENG VTA903

FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 027 000 002 000 007 007 755 003 011 003 006 000 127 000 000 000 003 013 026

UT.J82

SAMPLE SAMPLE NUMBER DATE TRANSIT OSOH OSOC 0000 226 0101 COMP TYPE COMP SER FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 021 000 002 000 006 006 700 003 003 010 003 000 000 138 000 000 000 003 020 012

							
	OIL ANALYSIS REQUEST					KEYPUNCH CODE	
10	O nil'ANALYSIS LAG New Cumberland STSGP-PE						1-3
F							4
O M	M DRSTA-RGRD Mr. R. Rimpela						
	Warren,				1: 78	86-8528	<u> </u>
EUUIP	Ment Model Cummins	VPA-903	Engine				11-14
EQUIP	MENT SER. NO).					15-20
ENDIT	TEM MODEL/H	ULL NO.					
EN:11	EM SER. NO./	LIC					
DATE	SAMPLE TAKE	N (Lizy, Ma	., , , , , , , , , , , , , , , , , , ,	OCAL		SAMPLE	21-24
11003	Mally STARCE	NATO Te	est				25 27
	S/MILES SINCE						10-33
	REASON FOR SAMPLE LAS TEST OTHER [] ROUTINE D REQUEST D CFLL D (Sprofy)						34
OIL ADDED SINCE LAST SAMPLE (Pts. (Hs. Gals)						35-36	
ACTION TAKEN SAMPLE 13 TAKEN A						17	
DISCREANTIFEM 206 HDC OF END						RANCE	
HOW MALFUNCTIONED 26 HRS OF ENDOR					Affice		
HOW 5		LAS PEQUE	ST 🗇	AIR O	RGRO	UND CREW	
TIOW TAKEN SAMPLE TEMPERATURE TYPE OIL					37-30		
REMAR	nemanks Oil sample spectrographic analysis is requir						s require
for NATO 400 hour tests. Samples will be ta						aken evervi	
25 ho	25 hours. Complete oil change after every 100 hours						100 hours
oi eu	of endurance.						
		FOR L	AB-USE C)NL	Y		
SAMPLE RESPONSE TIME 195/75					39-40		
"E 41.	43 AG 44-46	AL 47.49	CR 30-52	cu	53-55	MG 58-58	NI 59-61
		ا ي ب		<u>Z</u>	74.55	955	<u></u>
78 62-44 51 65-67 5N 66-70 T1 72-73 MO 79-76							
LAU RECOMMENDATION					77-78		
SAMPL	·2155	SIGNAT	URE		FILE 79	MAINT	DATA SEG

DO 1 NOV 77 2026 PREVIOUS EDITION WILL BE USED

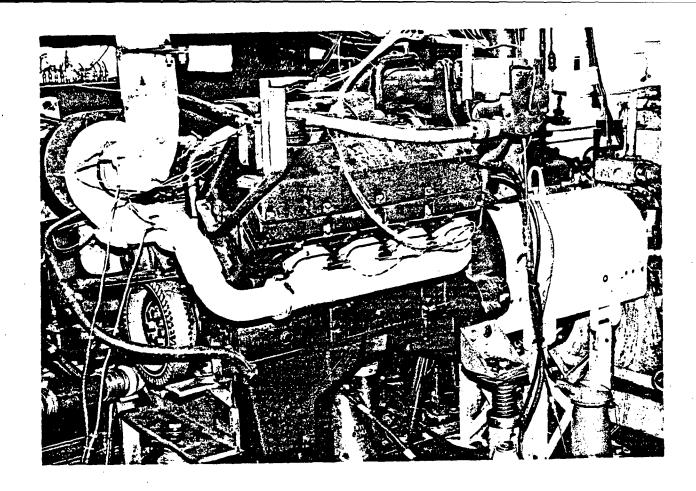
OIL ANALYSIS REQUEST					KEYPUNCH CODE		
TO	GIL ANALYSIS LAB New Cumberland STSGP-PE						1-3
F	MAJOR COMMAND TACOM, Warren, MI 48090						¥
O M	O OPERATING ACTIVITY (Include ZIP Code/APO) DODAAD						5-10
Equipment Model APL-903 Engine					11-14		
}	MENT SER. NO			-			15-20
END I	TEM MODEL/HI	LL NO.			***************************************		
END I	TEM SER, NO./E	:10					
DATE	SAMPLE TAKE	N (INy, Mo		OCAL AKEN		SAMPLE	21-24
HOUR	S/AMILES SINCE	NATO Te	est.				25-29
HOUR	S/MILES SINCE	OIL CHAN	GE				30-33
REASON FOR SAMPLE LAB TEST OTHER O ROUTINE O REQUEST O CELL (Specify)						34	
OIL ADDED SINCE LAST SAMPLE (Pts, Qrs, Gals)						35-36	
ACTION TAKEN SAMPLE 14							
DISCRETANT ITEMAKEN AT 350							
HOW MALFUNCTION OURS OF ENDURA					NCE		
HOW FOUND D LAB REQUEST D AIR OH GROUND CREW							
HOW TAKEN SAMPLE TEMPERATURE TYPE OIL					37-38-		
REMA	HEMARKS Uil sample spectrographic analysis is require						
25 h	for NATO 400 hour tests. Samples will be taken every 25 hours. Complete oil change after every 100 hours					ken every 00 hours	
of endurance.							
FOR LAB USE ONLY							
SAMPLE RESPONSE TIME					39-40		
FE 41	-43 AG 44-46	AL 47-45	CM 50-57	cu (33-55	MG 86-58	NI 59-61
PB \$2							
17	17 5 0 0 5						
LAB RECOMMENDATION					77-78		
SAMPLE NO. SIGNATURE FILE MAINT					DATA SEQ		
79					80		

DD 1 NOV 77 2026 PREVIOUS EDITION WILL BE USED

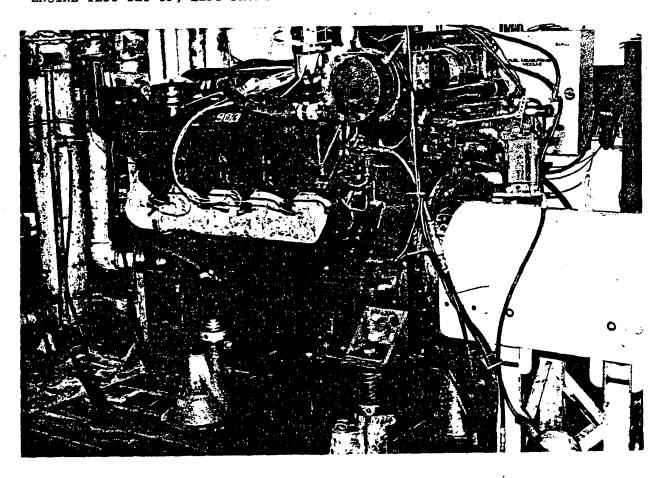
OIL ANALYSIS REQUEST	KEYPUNCH CODE				
TO GIL ANALYSIS LAB New Cumberland STSGP-PE	1-3				
MAJOR COMMANO TACOM, Warren, MI 48090	4				
O DRSTA-RGRD Mr. R. Rimpela Warren, Michigan 48090 AVII: 786-8528	5-10				
EQUIPMENT MODEL (AME -903 Engine	11-14				
EQUIPMENT SER, NO.	15-20				
END ITEM MODEL/HULL NO.					
THO ITEM SER, NO./EIG					
DATE SAMPLE TAKEN (JAY, Ma., Vr) LOCAL TIME SAMPLE TAKEN	21-24				
HOURS/MILES SINCE OVERHAUL 400 Hour NATO Test	25-29				
HOURS/MILES SINCE OIL CHANGE	30-33				
REASON FOR SAMPLE LAG TEST OTHER	34				
OIL ADDED SINCE LAST SAMPLE (Pts, Qts, Gals)	35-36				
ACTION TAKEN SAMPLE 15					
DISCREIT JAKEN AT 375					
HOW MALFUNJ ONED RS OF ENDORA	NGE				
HOW FOUND	w				
HOW TAKEN SAMPLE TEMPERATURE TYPE OIL	37-38				
REMARKS Oil sample spectrographic analysis is require for NATO 400 hour tests. Samples will be taken every 25 hours. Complete oil change after every 100 hours of endurance.					
FOR LAB USE ONLY					
SAMPLE RESPONSE TIME 223/74	39-40				
FE A1-43 AG 4A-46 AL 47-49 CR 30-52 CU 53-55 MG 86-5 46 O O 9 11 788	NI 59-61				
PB 82-64 SI 85-67 SN 66-70 YI 71-73 MO 74-75					
LAB PECOMMENDATION	77-78				
SAMPLE NO. SIGNATURE SPLE MAINT	DATA SEQ				

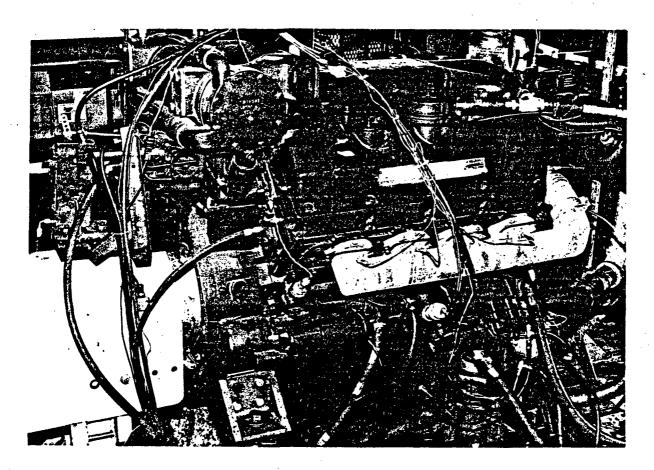
DD , FORM 2026 PREVIOUS EDITION WILL BE USED

OIL ANALYSIS REQUEST						KEYPUNCH CODE	
O'L ANALYSIS LAB New Cumberland STSGP-PE						1-3	
TACOM, Warren, MI 48090						4	
O O	I T I DOCTA OCON Mae D Diamete						5-10
	Equipment Model/APL Cummins VIA-903 Engine					11-14	
A. Antonia	NT SER. NO			-		··· هامه ۱۳۰۰ تا میواند.	15-20
END ITE	MODEL/H	ULL NO.					
ENDITE	4 SER. NO./	EIC					
DATE SA	MPLE TAKE	N (Fary, Ma	.,	OGAL	TIME:	SAMPLE	21-74
HOURS	OO Hour	NATO Te	est				25-29
	ILES SINCE						30.33
	FOR SAMPL	E LAB	D cru	7	OTH () ()při		34
	OIL ADUFD SINCE LAST SAMPLE (Pts. Qts. Gals)						35-36
ACTION .	ACTION TAKENSAMPLE 16 TAKEN						
DISCREE	DISCREPANTITEM T ICA LIAUPS						/
HOW MAIL FUNCTIONED ENDURANCE							
HOW FOU		LAD REQU	EST D	AIR OI	R GRO	UND CREW	
HOW TAKEN SAMPLE TEMPERATURE TYPÉ OIL.						37-38	
for NA' 25 hou	REMARKS Uil sample spectrographic analysis is require for NATO 400 hour tests. Samples will be taken every 25 hours. Complete oil change after every 100 hours of endurance.						
	FOR LAB USE ONLY						
SAMPLE RESPONSE TIME 227/74					39-40		
re 41-43	19 44-46 O	AL 47-49	CR 50-52	cu !	3	WE 55.50 823	NI 59-61
2 3	51 63-67	SN 68-70	TI 71-73		74-75		
PLAB REC	LAB RECOMMENDATION						77-78
SAMPLE		SIGNAT	TURE /	٦	FILE TH	MAINT	DATA SEQ

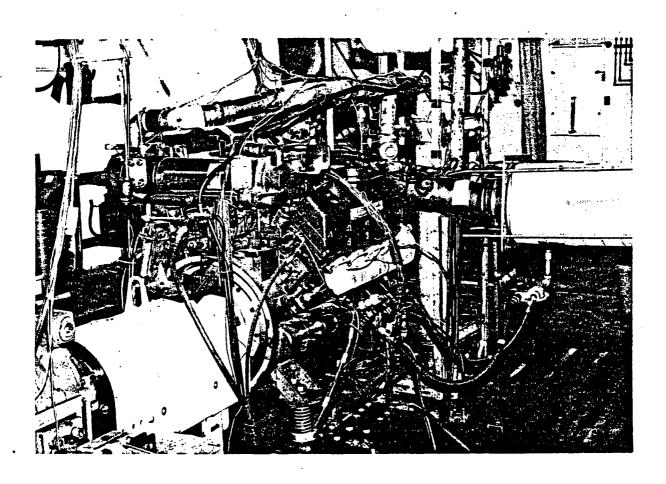

DD | NOV 77 2028 PREVIOUS EDITION WILL BE USED

8	tRS	22 121
1.	e f	∨ 018
774	36	Ď 000 400
NAX N		₹00 €00
FOX	H. W.	200 000
NOSt	SAMPLE /ANEW T/ 400HENATO 326 HRS	₩ 000
Ä		B 168
	200 200 200 200	∷ 000
щ	H 8	Z 000
I Z		S.I.
MAPIN	TRANSIT USUH	PB 015
E SE	2231	N.I. 003
Prop.	in Ku	¥ 000
FORMAT TO UPDATE SOAPIN FILE SAMPLE DAYS IN	NEMBER 2155	
TAM.	~ ~	US 000
FOF	20 21 21 31 31 31 31 31 31 31 31 31 31 31 31 31	C. C
		# 00 00 00 00 00
		AL. 000
N.I		⊕ 000 000
UTJ82		FE 044

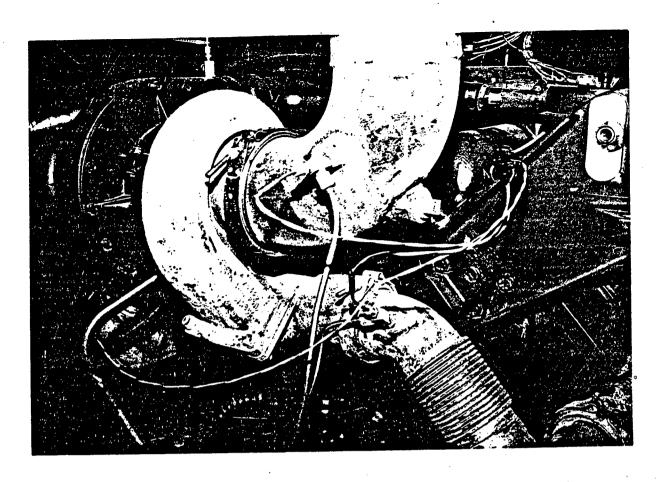

FE AG AL BE CR CU MG NA NI PB SI SN TI B BA CD MN MO V ZN 051 000 003 000 008 009 998 000 003 017 005 000 000 148 000 000 002 005 017 172 4001-INDITIONATO AKEN AT A ACCOLLENATION SEO HES REASON FOR SAMPLE SAMPLE SAMPLE DATE TRANSIT OSOH OSOC 0000 350 FORMAT TO UPDATE SOAPIN FILE **** 2156 3231 COMP TYPE COMP SER) Toins.

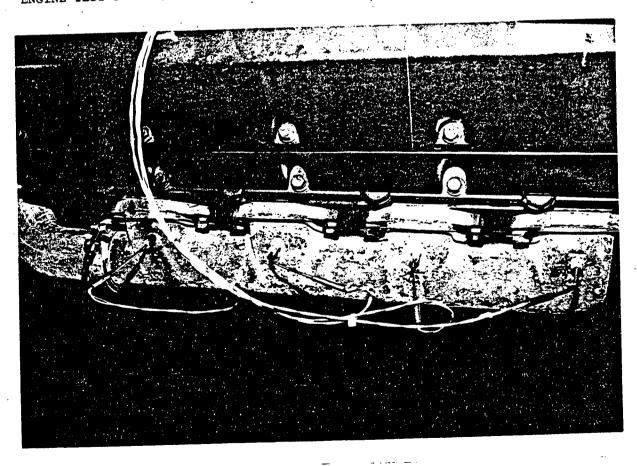

JAMILE 15 JAKEN AT 375 HRS

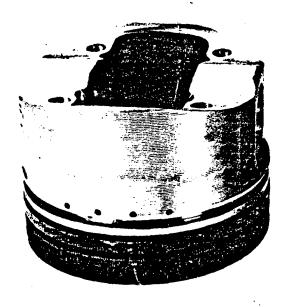
SAMPLE 16 TAKEN AT APPENDIX F - Photographs

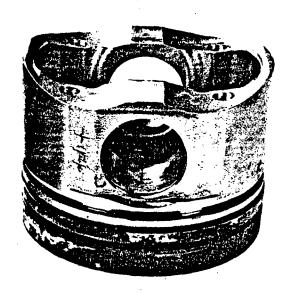


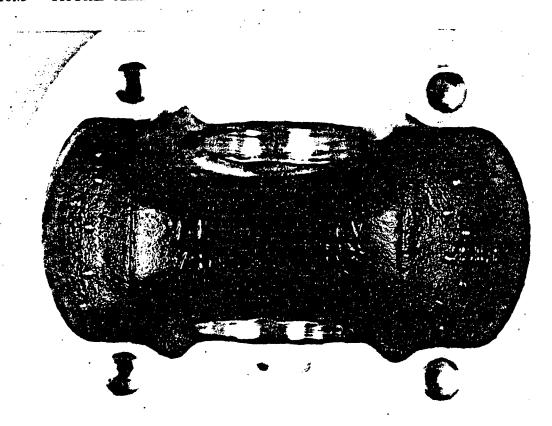
ENGINE TEST SET-UP, LEFT FRONT

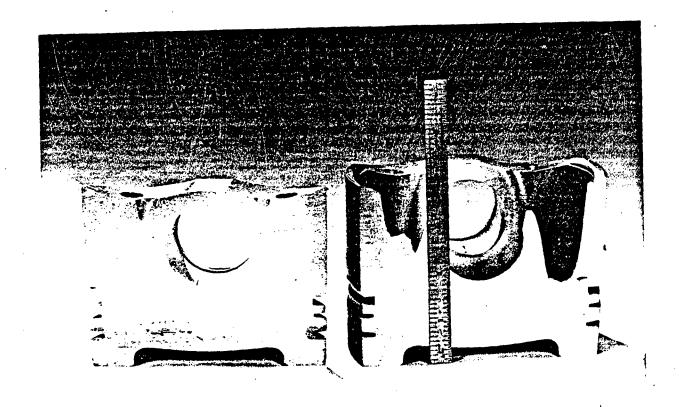


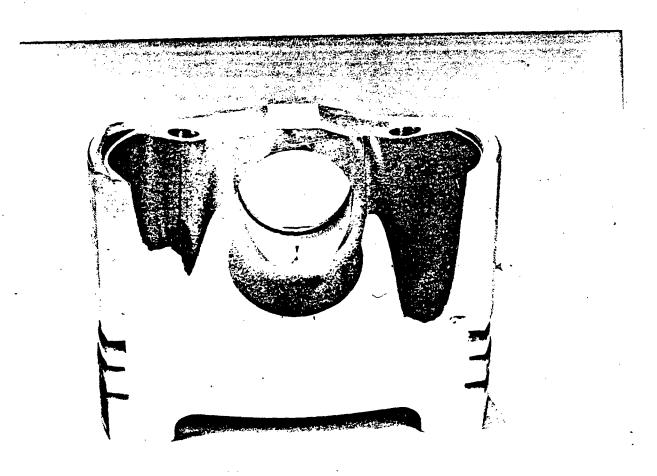

ENGINE TEST SET-UP, RIGHT SIDE



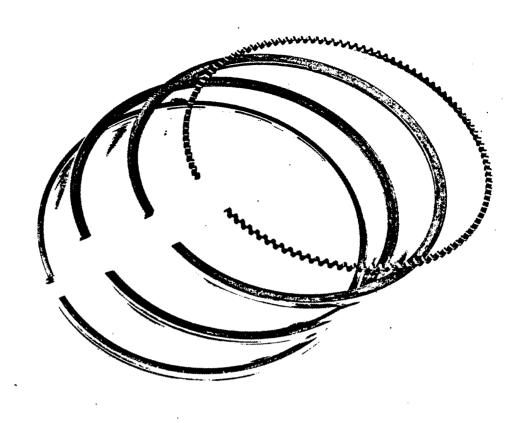

ENGINE TEST SET-UP, RIGHT REAR

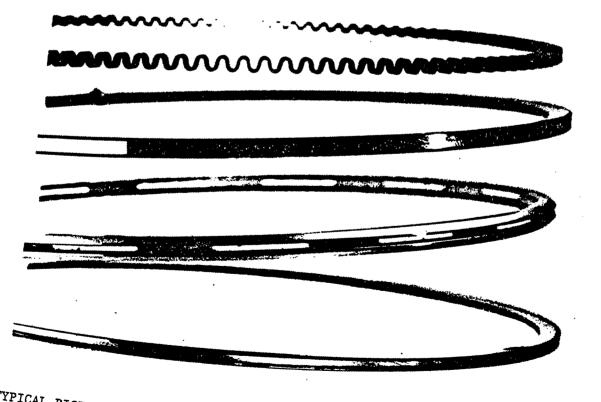

ENGINE TEST SET-UP, TURBOCHARGER

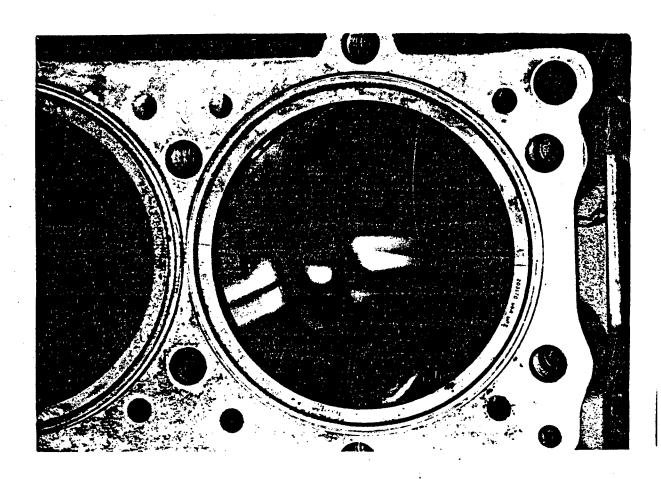


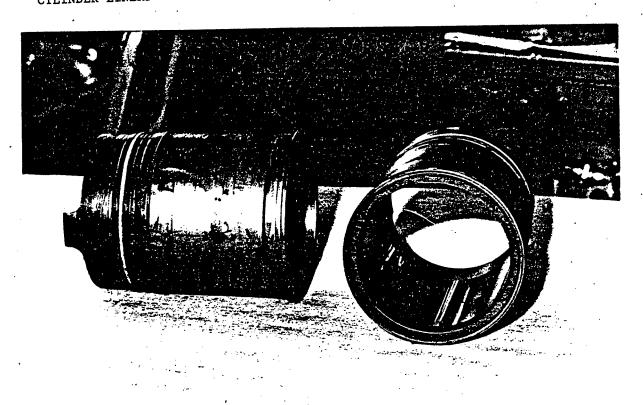


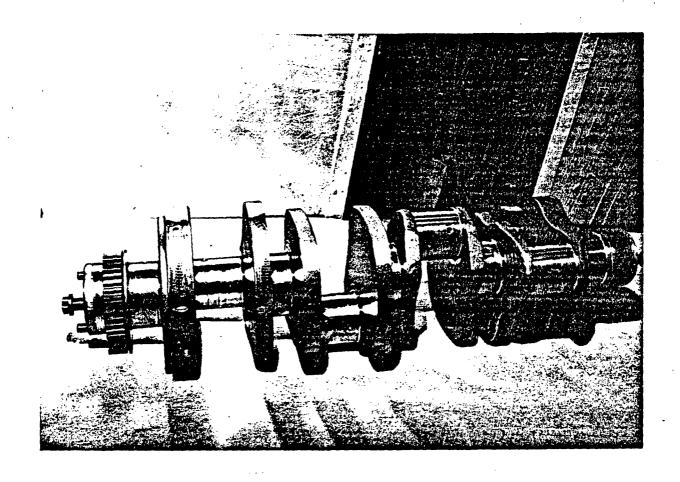
PISTONS - TYPICAL CLEAN APPEARANCE

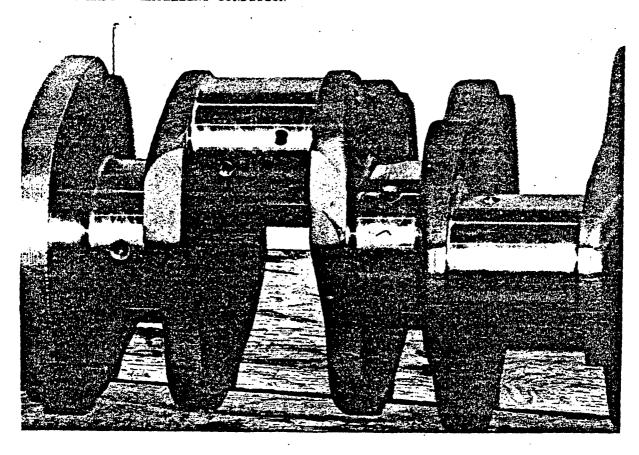

PISTON - SECTIONED TO DISPLAY PIN BORE CRACKS (WITH DYEPENETRANT) F-6

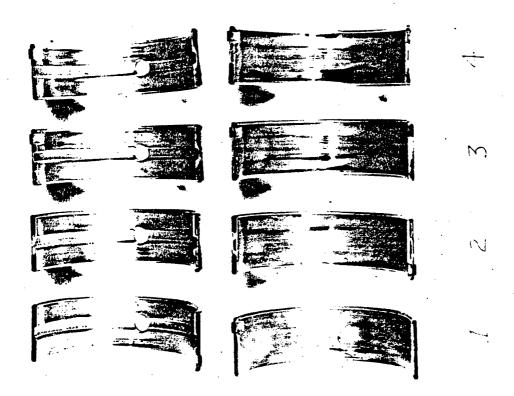

PISTON - SECTIONED TO DISPLAY PIN BORE CRACKS

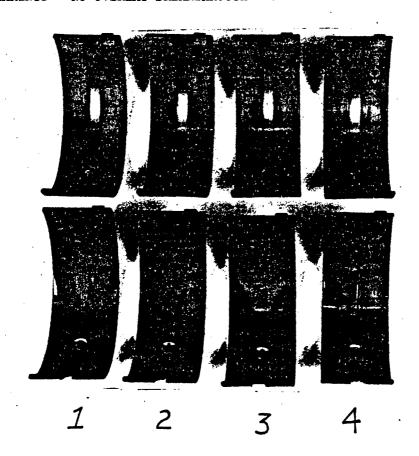


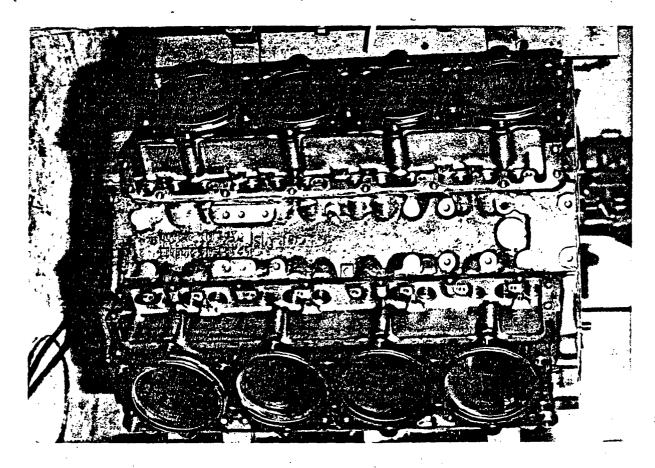

TYPICAL PISTON RINGS - NO BREAKAGE


TYPICAL PISTON RINGS - NO SIGNS OF

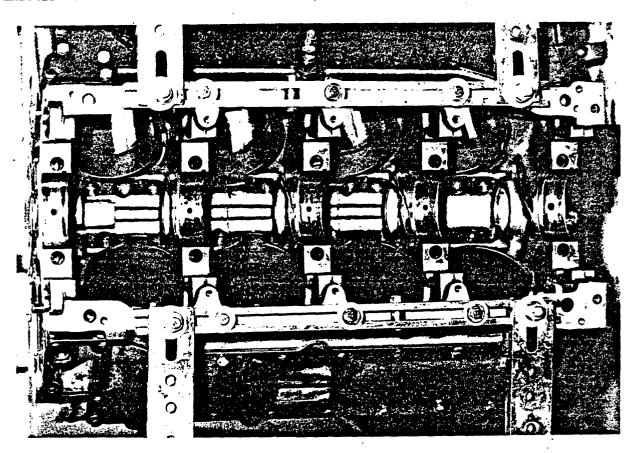

CYLINDER LINERS - EXCELLENT CONDITION


F-9

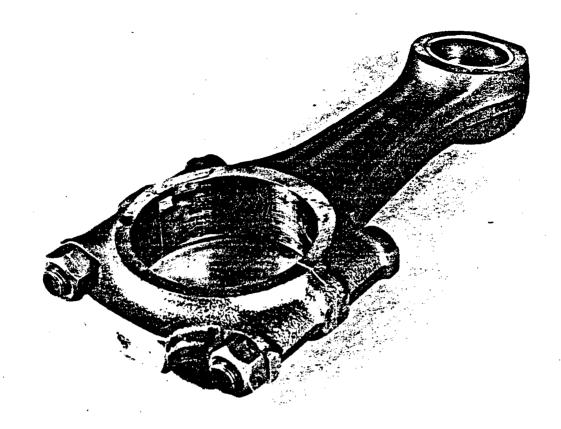

CRANKSHAFT - EXCELLENT CONDITION

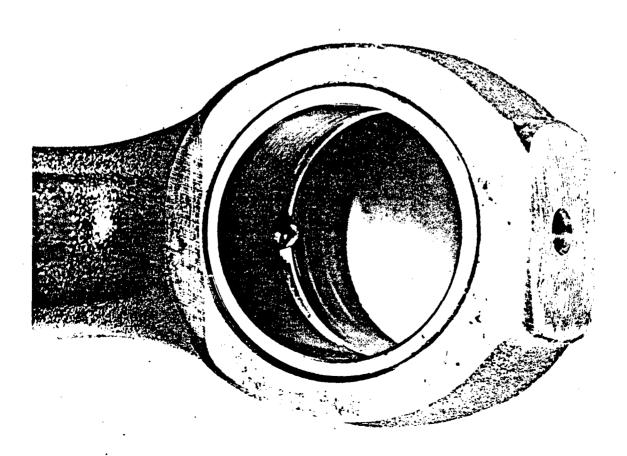


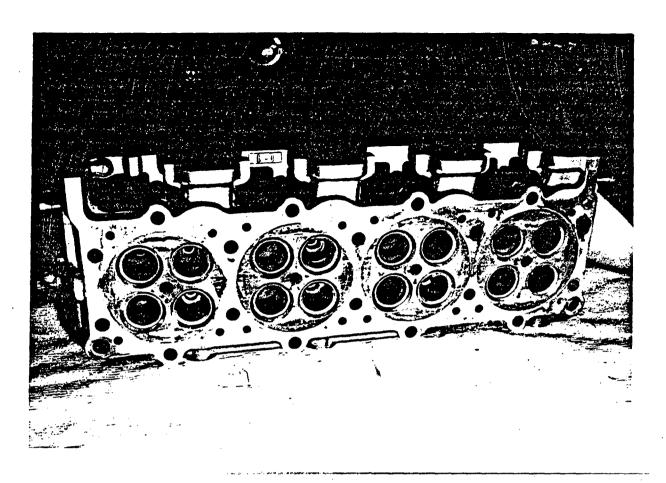
CRANKSHAFT -MAIN AND ROD JOURNALS EXCELLENT CONDITION

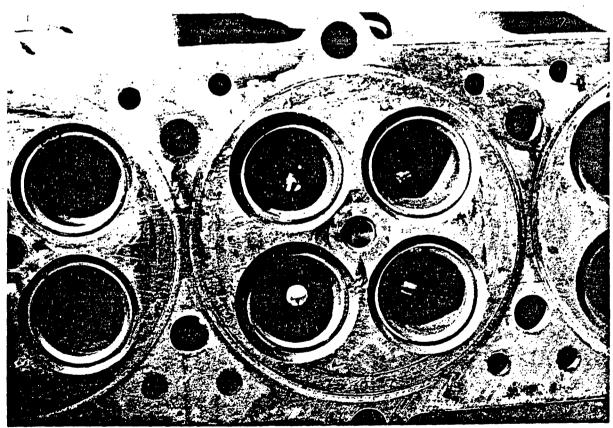


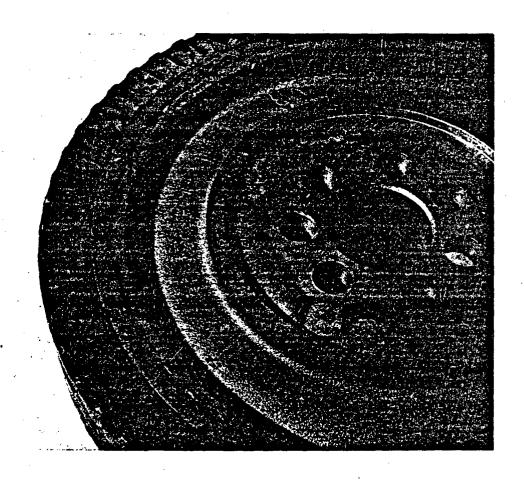
MAIN BEARINGS - NO OVERLAY BREAKTHROUGH

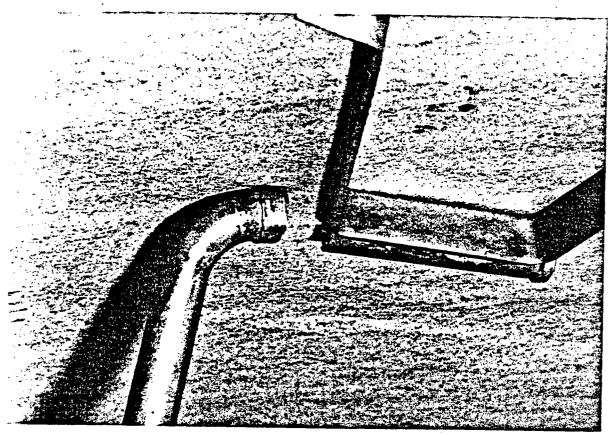


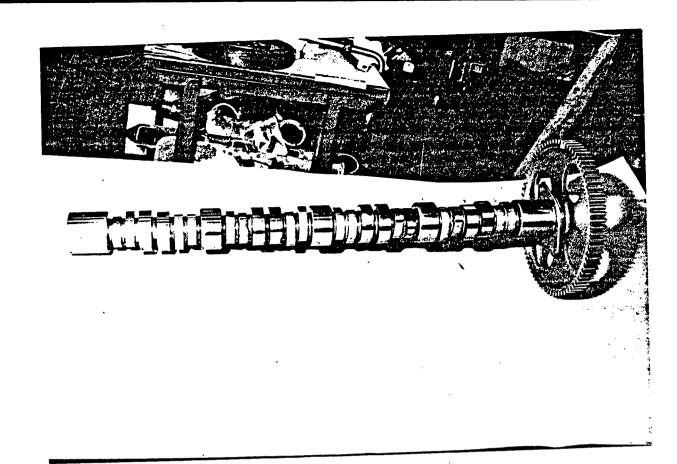

ENGINE BLOCK - TOP VIEW WITH LINERS - EXECULENT CONDITION

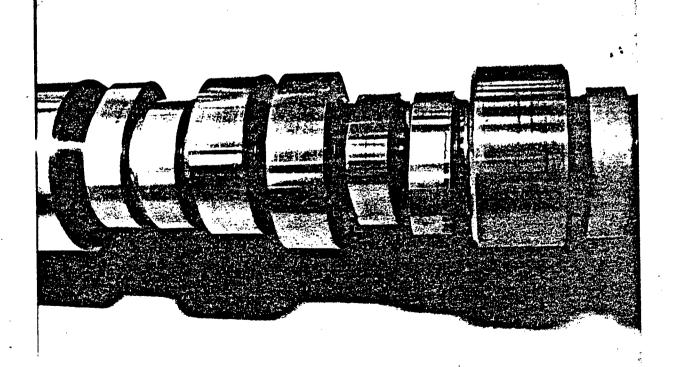



ENGINE BLOCK - BOTTOM VIEW WITH LINERS - EXCELLENT CONDITIONS F-12

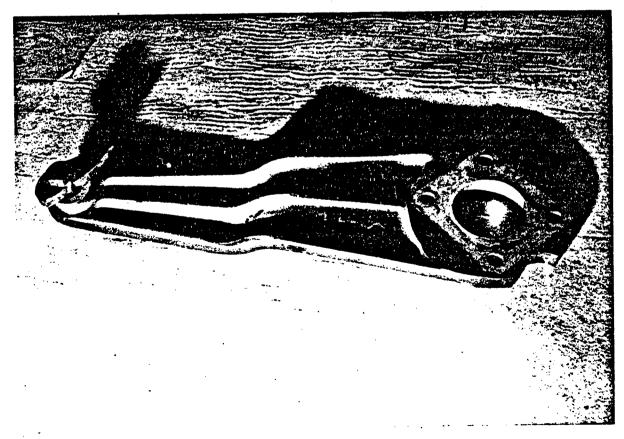

CONNECTING ROD

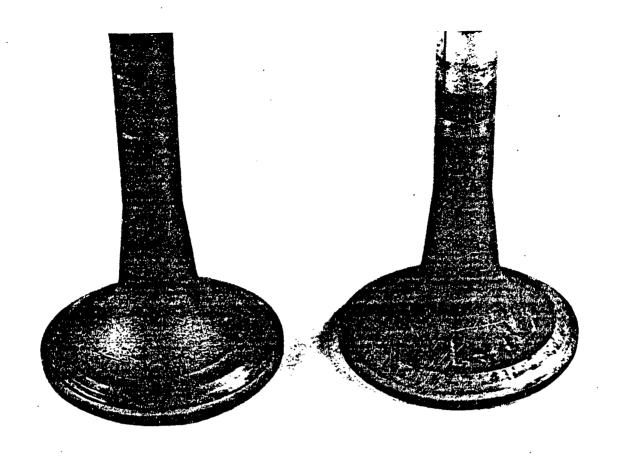


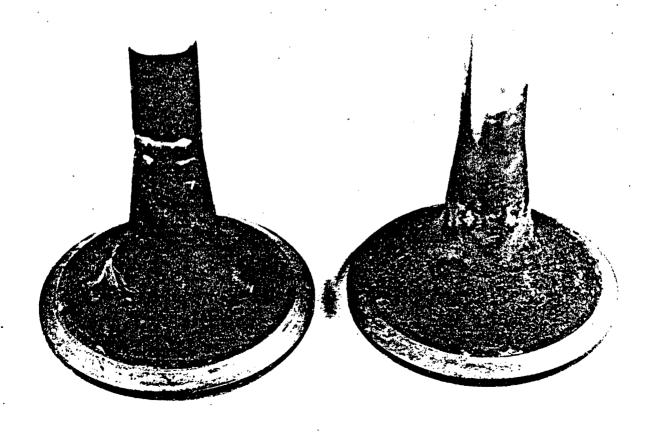

VALVE SEATS - VERY GOOD CONDITION


TORSIONAL VIBRATION DAMPER - ELASTOMER FATIGUE



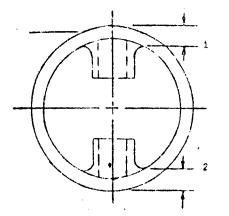

OIL PICKUP TUBE FAILURE

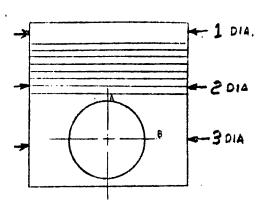

CAMSHAFT - EXCELLENT CONDITION

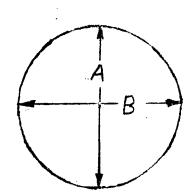


TRANSMISSION OIL COOLER SUPPORT
BRACKET SHOWING BROKEN TAB FROM OIL
COOLER
F-17

TYPICAL INTAKE VALVES - CLEAN - NO EVIDENCE OF STRESS

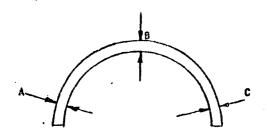

TYPICAL EXHAUST VALVES - CLEAN - NO EVIDENCE OF STRESS


APPENDIX G


DIMENSIONAL INSPECTION SHEETS

PISTON PIN BORE É-PISTON OD.

	7 Sep 83	SHEET OF
١	•	work order RZ610133
	RECORDED BY	CHECKED BY



<u> </u>	7	PISTON	PIN	BORE	TAPER	AVE. PIA	PISTON	OD.	1 DIA		2 PIA		3 D/
		AI 1.748	- 1	1.7489	0			A	5.443	A	5.468	A	5.483
.	1	Bi 1.749			.0001			8	5.444	. 8	5.471	B	5.481
		000. م		.0002	<u> </u>	1.7490		OR	.001	OR	.003	OR	.002
1		1.749			0			A	5.448	A	5.470	A	5.484
-	2	81 1.749		1.7498	. 0			8	5.449	A	5.470	B	5.483
		or .000	3 OR	.0003		1.7496		OR	.001	CR	.000 .	OR	.001
		AI 1.749		1.7496	.0002			A	5.449	A	5.468	Α	5.485
	3	81 1.749		1.7500	.0004	l		B	5.450	B	5.470	15	5.483
·		000	2 11	.0004		1.7498		JOR!	.001	38	.002	OR	
		Al 1.749	1 A2	1.7491	0		W.	A	5.448	1	5.467	A	5.484
	4	81 1.749	2 82	1.7492	0			ß	5.450	B	5.469	B	5.483
		OP .000	1 68	.0001		1.7492	200	OR	.002	32	.002	OR	.001
		Ai 1.749	1 AZ	1.7491	0			A	5.448	TAT	5.470	Δ	5.483
1.	5	Bi 1.749	1 B 2.	1.7491	0			B	5.448	B	5.469	0	5.483
<u> </u>		OOO.	OR	.0000		1.7491	<i>/</i> . \	OR	.000	OR	.001	08	.000
		AI 1.749	4 42	1.7494	0			A	5.447	A	5.468	A	5.480
	6	BI 1.749	+ 62	1.7495	.0001		\sim	6	5.453	B	5.471	B	5.484
<u> </u>		OR .000) of	.0001		1.7494		OR	.006	ON	.003	OR	.004
ı		Al 1.749	2 42	1.7492	0			A	5.448	A	5.468	A	5.484
İ	7	81 1.749	+ 62	1.7494	0		-X	B	5.449	B	5.469	B	5.482
<u> </u>		ok .000		.0002		1.7493		OR	.001	OR	.001	OF	.002
		Al 1.7492		1.7492	0			A	5.444	A	5.464	Δ	5.484
	8	81 1.7492		1.7494	.0002		\sim	A	5.444	B	5.467	B	5.483
L.,		.0000	04	.0002	l	1.7493		DR	.000	OR	.003	OR	.001

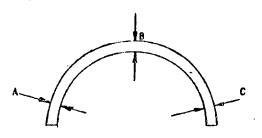
Pistons numbered 2, 3, 4, 5, 6 and 7 show visual signs of cracks in the upper NOTE: half of the wrist pin bores. A liquid penetrant inspection performed gives a relative indication of the discontinuities present in the above discribed pistons.

CONNECTING	ROD	BEARING	SHELL	THICKHESS

_	DATE 12 Sep 83	SHEET OF
	ENGINE NO. Cummins VTA-903	WORK ORDER -
	RECORDED BY DRSTA-QAA	CHECKED BY D. Melanshek

CORR.			UPPER II	ALF		CONN.		LOWER HALF						
ROD N€.	LOC.	FRONT	REAR	TAPER	WEAR	ROD NO.	LOC.	FRONT	REAR	TAPER	WEAR			
	٨	.0938	.0937	.0001			A	.0935	.0937	.0002				
1	В	.0935	.0931	.0004			В	.0941	.0941	.0000	•			
	С	.0940	.0940	.0000		<u> </u>	С	.0932	.0935	.0003				
	A	.0938	.0938	.0000			A	.0933	.0935	.0002				
2	Đ	.0932	.0932	.0000			В	.0940	.0942	.0002				
	С	.0934	.093,7	.0003			С	.0938	.0938	.0000				
	Á	.0935	.0935	.0000			A	.0935	.0935	.0000				
3	ß	.0935	.0935	.0000			В	.0940	.0940	.0000				
	c	.0935	.0935	.0000			С	.0938	-0940	.0002	,			
	A	.0938	.0938	.0000		·	A	.0935	.0935	.0000				
4	В	.0933	.0935	.0002			B	.0940	.0940	.0000				
	С	.0935	.0937	.0002			С	.0938	.0938	.0000				
	A	.0937	.0938	.0001			A	.0938	.0935	.0003				
5	Ú	.0932	.0935	.0003			8	.0942	.0942	.0000				
ļ	c	.0940	.0938	.0002			С	.0935	.0935	.0000				
	Á	.0930	.0930	.0000			A	.0935	.0940	.0005				
6	а	.0932	.0932	.0000			В	.0940	.0940	.0000				
	3	.0934	.0935	.0001			C	.0936	.0936	.0000	,			

Wake:


G-3

TAC FORM 4532 6

DETROIT ARBENAL . CENTER LINE, MICHIGAN

CONNECTING ROD BEARING SHELL THICKNESS

DATE . 12 Sep 83	SHEET OF
ENGINE NO. Cummins VTA-903	WORK ORDER
RECORDED BY DRSTA-QAA	CHECKED BY D. Melanshek

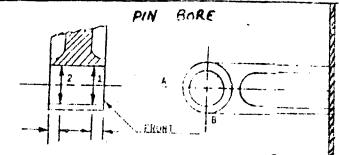
Conf.			UPPER H	ALF	· · ·	CONN.	LOWER HALF						
ROD NG.	LOC.	FRORT	REAR	TAPER	VEAR	ROD NO.	LOC.	FRONT	REAR	TAPER	WEAR		
	A	.0935	.0935	.0000			٨	.0935	.0935	.0000			
7	В	.0934	.0934	.0000		7.	Ð	.0942	.0942	.0000			
1	С	.0940	.0940	.0000			С	.0938	.0938	.0000			
	A,	.0937	.0935	.0002			Α .	.0935	.0937	.0002			
8	Ü	.0942	.0942	.0000		8	8	.0935	.0935	.0000			
	c	.0940	.0940	.0000			С	.0935	.0938	.0003			
	A						A						
	S						В						
í Ì	С						С						
	Α						A						
	F						В			:			
1	С						С				·		
	λ						٨						
į	6						В						
	С						С						
	4						<u> </u>						
:	1.						В						
	- ; T						С						
1.1				•			H ills in the control of the contro	(೨೫ ಕ್ಯಾ					

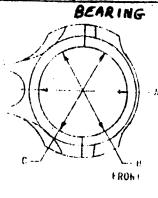
hi. 9-20-83 G-4

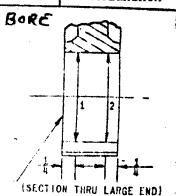
CONNECTING ROD PIN BORE & BEARING BORE

IO Sep 83

ENGINE NO.
Cummins VTA-903

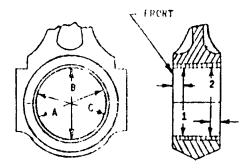

RECORDED BY
DRSTA-QAA


SHEET OF


WORK ORDER

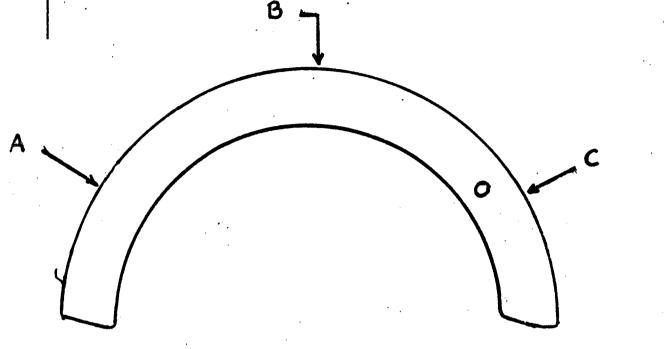
RZ610133

CHECKED BY
D. Melanshek



						G					
(11.	100.	PIN BO	RE POST	LION	.	ιΥι.	1.00	BEARING	Boke Pos	E HIA. ITION	
		1	2	TAPER	AVG. DIA.		LOC.	•	2	IAPER	AVG. DIA
	A	1.7512	1.7512	.0000	1.7512		٨	3.3174	3.3174	.0000	
1	b	1.7510	1.7512	.0002	1.7511		B	3.31/0	3.31/0	.0000	
	0h	.0002	.0000	.0002		B	c	3.3168	3.3172	.0004	
1	=	-		.0000	1 7516	Ė	OR	.0006	.0004	.0002	
	Α	1.7516	1.7516		1.7516		Α	3.3172	3.3174	.0002	ļ
. 2	11	1.7514	1.7516	.0002	1.7515	·	- 11	3.3174	3.3170	.0004	
	08	.0002	.0000	.0002				3.3170	3.3174	.0004	
V/	۸ .	1.7510	1.7510	.0000	1.7510		06	.0004	.0004	.0000	
· 3	υ.	1.7510	1.7510	.0000	1.7510	À	<u> </u>	3.3172	3.3174	.0002	
·		.0000	.0000	.0000		Į.	į į.	3.3174	3.3176 3.3172	.0002	
		1.7510	1.7510	.0000	1.7510	5 5	1 75	.0004	.0004	0000	
,	<u> </u>		j			r 6	<u></u> .	3.3172	3.3174	.0002	
4	5	1.7510	1.7510	.0000	1.7510	ř	0	3.3172	3.3177	.0005	
	(iii	.0000	.0000	.0000		ii A		3.3172	3.3174	.0002	
	A	1.7510	1.7512	.0002	1.7511	3		.0000	.0003	.0003	
5		1.7510	1.7516	.0006	1.7513			3.31/2	3.3170	.0007	
. ,	-	.0000	.0004	.0004			!	3.3176	3.3172	.0004	
राह्मारम्			= = 1			\$	_	3.3170	3.3174	.0004	
6	. "	1.7516	.17512.	.0004	1.75.14		¥*	.0006	.0004	.0002	
	, t ,	1.7512	1.7512	.0000	1.7512			3.3170	3.3172	.0002	
	Ch	.0004	.0000	.0004			1.	3.3169	3.31/0	.0001	ļ ———
		1.7512	1.7510	.0002	1.7511			3.3171	3.3173	.0002	
83 ₇	11	1.7512	1.7512	.0000	1.7512	,	· · · · · · · - · •	.0002	.0003	.0001	
•		.0000	.0002	.0002				3.3174	3.3174	.0000	<u> </u>
e la consideración dels	= .=====	1.7512	1.7514	.0002	1.7513		<u> </u>	3.3170 3.3168	3.3174	.0004	1
							OR OR	.0006	.0004	.0002	
8	1	1.7512	1.7512	0000	1.7512	. i	A	3.3178	3.3174	0004	
مر سيون	n	.0000	.0002	.0002			11	3.3170	3.3164	.0004	
	•				•		C	3.3172	3.3172	.0000	
	-					<i>*</i>	ōŖ	.0008	.0010	.0002	

G-5


CONNECTING ROD BEARINGS

9 Sep 83	SHEET OF
Engine NC. Cummins VTA-908	LWO NO. RZ610133
RECORDED BY DRSTA-QAA	снескей ву. D. Melanshek

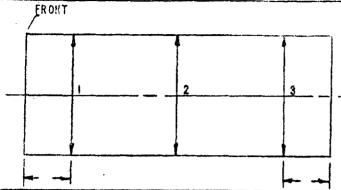
		SPEC. BEA	KLING 1.D.			_	SIEC. BEARING I.D.				
FEARTRO	1	2	TAPER	AVG. DIA.	BEARING	1	—T	2	TAFFR	AVG.	DIA
Ι. Λ	3.1296	3.1296	.0000							1	
1 13	3.1301	3.1306	.0005	1 2 1000	В					1	
' C	3.1299	3.1302	.0003	3.1299	С					7 — —	
648	.0005	.0010	.0005	-	OR					7	
A	3.1291	3.1292	.0001		4						
2	3.1296	3.1300	.0004	3.1295	В]	
- $	3.1297	3.1300	.0003		C						
(R	.0006	.0008	.0002	7	OR					1	
- jA	3.1298	3.1296	.0002	 	A					1	
3	3.1298	3.1298	.0000	1 2 1200	B					1	
- C	3.1294.	3.1294	.0000	3.1296	С]	
Tall and the	.0004	.0004	.0000		ō:	-					
	3.1297	3.1294	.0003		A	1					
4 7	3.1301	3.1299	.0002		B						
	3.1301	3.1299	.0002	3.1297	C						
	.0004	.0005	.0001		OR					ì	
	3.1294	3.1294	.0000		A						
5 B	3.1299	3.1304	.0005	1	8						
	3.1299	3.1302	.0003	3.1299	C						
08	.0005	.0010	.0005	1	OR						
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3.1292	3.1296	.0004						· 	 	
1-1	3.1298	3.1302	.0004	i	B						
6 -	3.1300	3.1302	.0002	3.1297	C	İ					
1	.0008	.0008	.0000		OR				•	į	
	3.1290	3.1292	.0002								
ļ	3.1296	3.1298	.0002		8						
$7 - \frac{c}{c}$	3.1294	3.1298	.0004	3.1294	С					1	
	.0006	.0006	.0000	1	OR				-	1	
-	3.1290	3.1292	.0002		A						
8	3.1296	3.1298	.0002		B]	
0 c	3.1290	3.1294	.0004	3.1293	С						
0.3	.0006	.0006	.0000	İ	OR						
1 - 1					A					1	
8			Partie No.	Marie Marie Control	_B					1	_
			- 1		c						
0.0					OR						
- \				-	A						
U					0				-		
c				T. PRINCES OF STREET	1 7:					1	_
22,5,744				m I	OR-			-		1	
1011	1	100 5 1	- <i>F</i> ~∴∧	9-1383		l			DETROIT	AHSENAL	

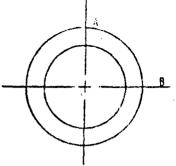
		12 Sep 83	SHEET OF
TUBUCT	BEARING	ENGINE NO. Cummins VTA-903	WORK ORDER
THRUST	DEAKING	 RECORDED BY DRSTA-QAA	CHECKED BY D. Melanshek
	_		

BEARG. NO.	THICK.	THICK.	THICK.
UPPER REAR	. 1480	. 1510	. 1490
LOWER REAR	. 1490	. 15 15	. 1500
UPPER FRONT	. 1500	• 15 15	. 1500
LOWER FRONT	. 1495	. 1513	.1498
			·

D.M. 8.

PISTON PIN DIMENSION CHECK (LAB. SOP.)

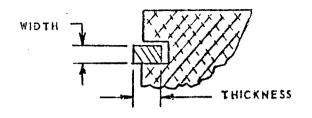

SHE SEP 83 SHE ENGINE NO.


SHEET OF

Cummins VTA-903 RZ610133

RECORDED BY CHECKED B

DRSTA-QAA G. Grembos



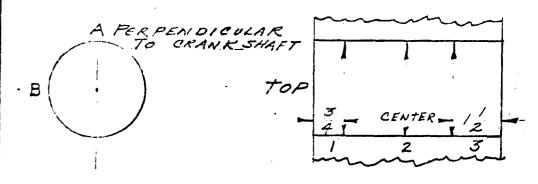
	 				-								
CYL.	LOC.	POSITIO		X	TAPER	AVG.	CYL.	roc		POSITION		TAPER	AVG. WEAR
NO.	1	1	2	3	I INVER	WEAR	NO.	100	1	2	3	IAFER	WEAR
•	A1	1.7492	1.7490	1.7491	.0001	.0002		A 1	1.7491	1.7489	1.7491		.0002
1_1_	81	1.749	11.7490	1.7491		.0002	5	81	1.7491	1.7489	1.7491		.0002
	0.5	.000	.0000	.0000				OR	.0000	.0000	.0000		
	A 2	1.7491	11.7489	1.7491		.0002		A 2	1.7492	1.7490	1.7492		.0002
2	82	1.7491	1.7489	1.7491		.0002	6	82	1.7492	1.7490	1.7492		.0002
	OR	.0000	.0000	.0000				OR	.0000	.0000	.0000		
	LΑ	1.7491	1.7489	1.7491		.0002		A.3	1.7492	1.7490	1.7492		.0002
3	1:3	1.7491	1.7490	1.7491	.0001	.0001	7	В3	1:7492	1.7490	1.7492		.0002
	OR	.0000	.0001	.0000				OR	.0000	.0000	.0000		
	A1	1.7491	1.7490	1.7491		.0001		, A 1	1.7495	1.7493	1.7495		.0002
4	H1	1.7491	1.7489	1.7491		.0002	8	81	1.7495	1.7493	1.7495		.0002
	OR	.0000	.0001	.0000				OR	.0000	.0000	.0000		
	A 2							A 2					
	82							B 2					
	OR							O R					
	٨3				,			A3	·				
	83							83					
· .	OR							OR					
	A 1							A1					
	B1							Bi					
	OR							OR					
	Λ2							A 2					
-	82							82		203202			
4	OR				2 -			OR	5 ^{\$ 4}				
Ī	۸3	7	1		embo	× 6	9/8.	_ A3		7			
Ī	83				V. V.		1/84	B3	-				
-	OR							0R					
Market Market	OPM	. 1. ,										DETROLT	

TAC / CRM 4574 C

PISTON RING THICKNESS AND WIDTH (LAB. SOP.)

12 Sep 83	SHEET OF
ENGINE NO. Cummins VTA-903	work order RZ610133
RECORDED BY DRSTA-QAA	G. Grembos

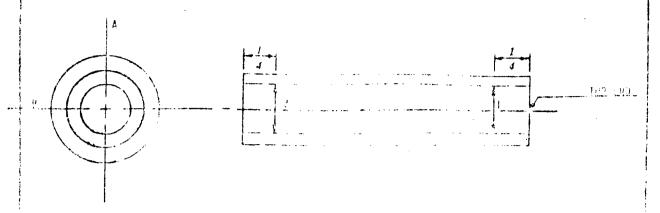
CYL.				THICKN RING		OIL				WID:		OIL	
		TOP	2	3	4.	5	6	ТОР	2	3	4	5	6
	MAX.	. 1130		. 1460		. 1860		.207		.205		. 159	
1	MIN.	. 1125		. 1455		. 1855		.204		.204		. 157	
•	MAX.	. 1145		. 1455		. 1860		.205		.206		. 160	
2	MIN.	. 1140		. 1450		. 1850		.202		.203		. 157	
3	MAX.	. 1150		. 1465		. 1860		.206		.206		. 159	
	MIN.	. 1 140		.1460		. 1855		.203		.204		. 156	
4	MAX.	.1150		. 1450		. 1860		.207		.209		. 160	
•	MIN.	. 1145		. 1445		. 1855		.204		.204		. 155	
_	MAX.	.1150		. 1460		. 1860		.205		.211		. 162	
5	MIN.	.1140		. 1450		. 1860		.203		.208	·	. 157	
	MAX.	.1165		. 1465		. 1860		.208		.205		. 159	
6	MIN.	.1160		. 1455		. 1855		.205		.203		. 156	
7	MAX.	.1150		. 1455		. 1860		.206		.210		. 158	
	MIN.	.1140		. 1450		. 1855		.203		.215		. 155	
8	MAX.	.1135		. 1460	····	. 1860		.207		.206		. 158	
	MIN.	.1130		. 1455		. 1855		.205		.202		. 156 . 156	
•	MAX.												
	MIN.												
	MAX.	·											
	אוא.												
	MAX.			. /									
	MIN.												
	MAX.												
	MIN.										9	en en en en en en en en en en en en en e	ar and a second


TAC FORM 4534 F

J.h. Membor

09/12/83

1				DATE 13 Sep 83	SHEET OF
	CYLINDER	LINER	BORES	ENGINE NO	SERIAL NO.
	. RIGHT B	. A NIV		Cummins VTA-903 ACCORDED BY DRSTA-QAA	G. Grembos
ł	ILIGITA D	MINI		DIGIA-GAR	G. Greinnos



CYL			POSITI	ON		BEMARKS
NO.	Loc	/	2.	3	TAPER	REMARKS
	A	5.4995	5.4998	5.4992	.0006	AVERAGE DIA = 5.4999
1	B	5.5000	5.5008	5.5004	.0008	AVERAGE DIA = 5.4999
	OR	.0005	.0010	.0012		
	A	5.4993	5.4998	5.4993	.0005	
2	B	5.5005	5.5008	5.5000	.0008	AVERAGE DIA = 5.4999
	OR	.0012	.0010	.0007	·	
	A	5.4991	5.5002	5.4996	.0011	
3	B	5.5008	5.5012	5.4999	.0013	AVERAGE DIA = 5.5001
	OR	.0017	.0010	.0003		
	A	5.4999	5.5004	5.4994	.0010	
4	B	5.5004	5.5011	5.4999	.0012	AVERAGE DIA = 5.5001
	OR	.0005	.0007	.0005		
	A					·
	B	_				
	OR		12.0	- 2		
	A		3	hem	lon	
	B			09/	3/50	
	OR			7 7 6	103	

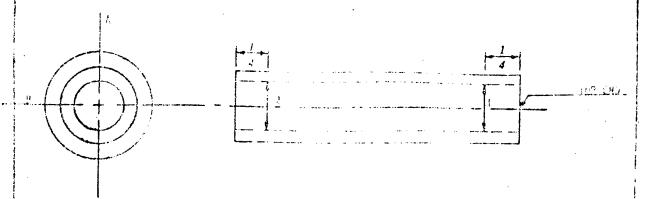
- 1		LEFT A PERP	LINE R BANK ENDICULA CRANKSA	R	CF	Cummin	P 83 NE NO S VTA-903 PROEO BY	SHEET OF SERIAL NO. RZ610133 GHECKED BY G. Grembos
CYL NO.	Loc	,	P051+1		-4		REA	1ARKS
. 5	A B OR	5.4992 5.4999 .0007	5.5004 5.5012 .0008	5.4994 5.5001 .0007	.00		AVERAGE DIA	
6	A B OR	5.4996 5.5002 .0006	5.4998 5.5008	5.4990 5.4996	.000		AVERAGE DIA	= 5.4998
7	A B OR	5.4998 5.5002	5.5005 5.5013 .0008	5.5000 5.4996	.000		AVERAGE DIA	= 5.5002
8	A B OR	5.4998 5.5002 .0004	5.5008 5.5009 .0001	5.4998 5.4998 .0000	.00		AVERAGE DIA	5 = 5.5002
	A B or							
	A B or		J. 72	June	09/	113/8	3	

XXXXXX VALVE GUIDE BORE DIMERSIONS (LAB. 50P.)

•	10 Sep 83	SHEE! OF
	ERMINE RO.	WORK GROEN
	Cummins VTA-903	RZ610133
	RECORDED BY	CHECKED BY
į	DRSTA-QAA	G. GREMBOS

;				1	1201				_
i			tal ob	,		1	963	17106	
() () () () () () () ()	LOC.		DOTTOM	1900	NO NO	: 1)*	1	00110H 2	THER.
	٨	.4533	.4533	.0000		٨	.4532	.4520	.0012
1a Int	В	.4533	.4535	.0002	1b Exh	U	.4531	.4520	.0011
1110	Α	.0000	.0002	<u> </u>	Exn	tra -	.0001	.0000	
	A	.4537	.4537	.0000		۸	.4535	.4535	.0000
1c Int	В	.4528	.4525	.0003	1d Exh	ا ا	.4528	.4528	.0000
	OR	.0009	.0012			OR.	.0007	.0007	
	A	.4536	.4537	.0001		Λ	.4535	.4534	.0001
2a Int	B	.4538	.4535	.0003	2b Exh	H	.4525	.4525	.0000
	OR	.0002	.0002			UH	.001	.0009	
Int	A	.4538	.4530	.0008		Α	.4536	.4530	.0004
2c Int	В	.4538	.4528	.001	2d Exh		.4535	.4530	.0005
	OR .	.0000	.0002		-	(0)	.0001	.0000	
	A			n ann an ann an ann an an an an an an an		۸			
	В						*****	-	
	OR		<u> </u>			OR ±	1000 - 121. 1250		
	<u> </u>			ò		^			
	8	(J. P.)	L.	9 /83			agus as agus a casa a decembrana		
	or								The same was the same

TAC FORM 4533 C

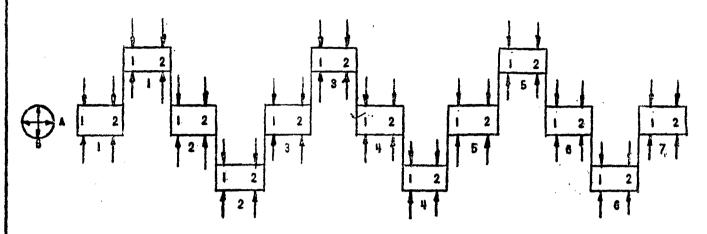

G-12

CANTER CAME OF STREET

XXXXX VALVE GUIDE BORE DIMENSIONS.
(LAB. 50P.)

TAC FORM 4533 C

	10 Sep 83	SHEET, OF
	Cummins VTA-903	WORK ORDER RZ610133
į	RESTA-QAA	CHECKED BY G. Grembos

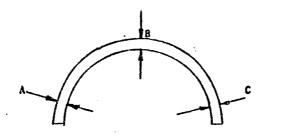


	~ ; ~ ******	tare part .		15 TAM							
		4.	11105		Tage and		Pos	11108			
CYL.	LOC.	V .	воттом 2	ing.	NO.	1411	101	2 EDITOH	TOP S		
	٨	.4534	.4525	.0009		٨	.4535	.4520	.0015		
3a Int	В	.4534	.4525	.0009	3b Exh	B	.4536	.4523	.0013		
	A	.0000	.0000			One	.0001	.0003			
	A	.4538	.4529	.0009		۸	.4538	.4523	.0015		
3c Int	В	.4541	.4527	.0014	3d Exh	13	.4537	.4525	.0012		
	OR	.0003	.0002			OR .	.0001	.0002			
ĺ	A	.4533	.4525	.0008		Α	.4533	.4528	.0005		
4a Int	В	.4533	.4525	.0008	4b Exh	<u> </u>	.4535	.4530	.0005		
	OR	.0000	.0000			er	.0002	.0002) في العوديسيا		
	A	.4537	.4525	.0012		, A	.4535	.4530	.0005		
4c Int	8	.4537	.4525	.0012	4d Exh	,1	.4535	.4535	.0000		
	0R	.0000	.0000			tue	.0000	.0005			
	A	aa waxaanaa waa waa				۸	entransference o l'aggle de designation de				
	B		*.			5	##				
	OR	<u> </u>	275 277742227			1011					
	A	/11		-	1	A #					
		J.K.	Tenlox	1/9/	83						
	OR			ē :							

G-13

CRANKSHAFT JOURNAL AND CRANKPIN DIAMETERS (LAB. SOP.)

DATE	SHEET OF
ENGINE NO.	WORK ORDER
Cummins VTA-903	. RZ610133
RECORDED BY	CHECKED BY
DRSTA-QAA	G. Furton



NOTE: Crankpin \$1 is in vertical position.

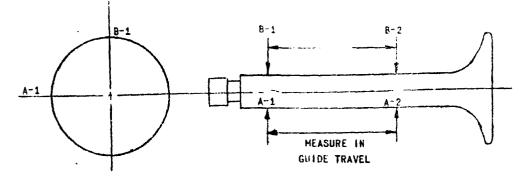
J 001	RKAL	1	MAIH JOURNA	L DIAMETERS		CRAH	(PIN		CRAHKPIN D	IAHETERS	
ĸo.	Loc.		2	TAPER	KEAR	иo.	LOC.	1	2.	TAPER	WEAR
	٨	3.7495	3.7497	.0002			A	3,1248	3.1248	.0000	
1.	В	3.7498	3.7496	.0002		4	8	3.1247	3.1247	.0000	
	0-8	.0003	.0001				0-2	.0001	.0001		1
	A	3.1242	3.1234	.0002			A	3.7496	3.7494	.0002	
1	В	3.1241	3.1243	.0002		5	8	3.7493	3.7493	.0000	
	0-R	.0001	.0001				O-R	.0003	.0001		
	A	3.7498	3.7495	.0003			A				
2	В	3.7497	3.7496	.0001	<u> </u>		β.				
_	O-R	.0001	.0001			1	0-3				
	A	3.1248	3.125	.0003			A				
2	B	3.1247	3.1249	.0002			8				
	0-R	.0001	.0001				0-R				
	A	3.7498	3.7496	.0002			٨				
3	8	3.7495	3.7496	.0001			₿.			,	
	0-R	.0003	.0000	·			0-R				
	٨	3.1248	3.1246	.0002			A		Sec. May		
3	В	3.1248	3.1245	.0003			β				
	0-8	.0000	.0001				0-R		780		
	A	3.7497	3.7497	.0000			A		1 ASK		
4	· 8	3.7495	3.7496	.0001			Ð				V.
	0-R	.0002	.0001				0-R				

CONNECTING ROD BEARING SHELL THICKHESS

6 Sep 83	SHEET OF
ENGINE NO. Cummins VTA-903	WORK ORDER RZ610133
RECORDED BY	CHECKED BY
DRSTA-QAA	D. Melanshek

Cont.			UPPER H	ALF		CONN.			LOWER H	ALF	
ROD NO.	LOC.	FRONT	REAR	TAPER	VEAR	ROD NO.	LOC.	FRONT	REAR	TAPER	WEAR
	٨	. 1540	. 1540	.0000			A	. 1538	.1538	.0000	
1	В	. 1545	. 1544	.0001	·	1 1 .	8	. 1543	. 1543	.0000	
	С	. 1530	. 1535	.0005			С	. 1536	. 1536	.0000	,
	A	. 1535	. 1535	.0000			A	. 1532	. 1535	.0003	
2	ΰ	. 1545	. 1543	.0002		2	В	. 1542	. 1542	.0000	
	С	. 1531	. 1535	.0004			С	. 1536	. 1536	.0000	
	A	. 1537	. 1535	.0002		3	·A	. 1535	. 1535	.0000	,
3	8	.1542	. 1540	.0002			В	. 1540	. 1540	.0000	·
	С	. 1533	. 1533	.0000			С	. 1536	. 1535	.0001	·
,	A	. 1532	. 1532	.0000	·		A	. 1535	1535	.0000	
4	В	. 1543	. 1541	.0002		4	В	. 1538	. 1540	.0002	
	С	. 1538	. 1538	.0000			Ċ	. 1533	. 1535	.0002	
	A	. 1535	. 1535	.0000			A	. 1534	. 1534	.0000	
5	b	. 1543	. 1544	.0001	,	5	В	, 1542	. 1542	.0000	
	С	. 1535	. 1535	.0000			С	. 1536	. 1536	.0000	
	Ä						A				
i I	ß			,			В				. ,
	С			•.			С		and the second	n de	

FOR WARE:


W.

9.20.83

1

EYEAUST	AND	INTAKE	VALVE	STEH	DIMENSIONS
		(1	AR SOFI		

-		
	DATE	
	8 Sep 83 ,	SHI IT OF
	ENGIUE NO.	WORK ORDER
	Cummins VTA-903	RZ610133
	RECORDED BY	CHECKED BY
	DRSTA-QAA	D. Melanshek

CYL.		POSI	TION		CYL.		POS	TION	
40.	LOC.	ł:	2	TAPER	NO.	LOC.		2	TAPER
F 1/11	A	.4500	.4500	.0000		Α	.4503	.4503	.0000
EXH.	В	.4500	.4500	.0000	EXH.	В	.4503	.4503	.0000
1	OR	.0000	.0000	.0000	1 1	OR	.0000	.0000	.0000
INT.	Α	.4505	.4502	.0003	1	Α	. 4505	.4502	.0003
int.	В	.4503	.4503	.0000	INT.	8	.4505	.4502	.0003
1	90	.0002	.0001	.0001	1	OR	.0000	.0000	.0000
EXH.	Α	.4507	.4503	.0004	-	A	.4500	.4502	.0002
LAN.	В	.4507	.4504	.0003	EXH.	В	.4500	.4501	.0001
2	OR	.0000	.0001	.0001	2	0.B	.0000	.0001	.0001
: MT .	A	.4504	.4498	.0006	1.47	٨	.4506	.4501	.0005
ø	В	.4503	.4498	.0005	INT.	G	.4505	.4501	.0004
2	OR	.0001	.0000	.0001	2	OK.	.0001	.0000	.0001
EXH.	_ A	.4502	.4502	.0000		A	.4499	.4499	.0000
ean. B	8	.4502	.4502	.0000	EXH.	B	.4499	.4499	.0000
3	OR	.0000	.0000	.0000	3	O R	.0000	.0000	.0000
147	<u> </u>	.4502	.4500	.0002	INT.	Α'	.4505	.4505	.0000
int. 3	1 13	.4502	.4498	.0004	4	В	. 4505	. 4505	.0000
3	OR	.0000	.0002	.0002	3	OR	.0000	.0000	.0000
EXH.	4	.4505	.4505	.0000	EXH.	A	.4502	.4502	.0000
£ A1- •	3	.4505	.4505	.0000	can.	В.	.4503	.4501	.0002
4	OR	.0000	.0000	.0000	4	30	.0001	.0001	.0001
INT.	Α	.4505	.4498	.0007	11.7	A	.4504	.4502	.0002
4	8	.4505	.4498	.0007	IRT.	В	.4504	.4502	.0002
4	OR	.0000	.0000	.0007	4	OR	.0000	.0000	.0002
EXH.	Α				EXH.	Α			
•	û					В			
	OR					OR			
INT.	Α				INT.	A	BERGINE	in the state of th	
	<u> </u>				-,"	В		4 1	
	OR					OH	<u> </u>		
EXH.	A			,	EXH.	A			
ě ;	В				B				
·	OR					OR	The same		
INT.	A				IKT.	A		M.	
	8			(ini.	F		9-	20-83
	OR				╢ * ┣-	04			

TAC FORM 12 AUG AO 4593 G-16

DETROIT ARSENAL CENTER LINE, MICHIGAN APPENDIX H

NATO REQUIRED DATA SHEETS

FULL LOADS AT 100 HOUR INTERVALS

PART LOADS AT ENDURANCE COMPLETION

E	VG11	NE	Type:		N°:		Plac	e date:	;	
		E INIT	ULL CHA	ARGE PER		ES	Ref	erence:		•
FU	EL:			OIL	type:	BRAKE type:				
Vo	lume	mas	S: .	kg/dm³	grade:		Ful	l Load a	t O Test H	lours
AMBI-	10	•c	34.5	30.1	30.2	30.01	29.9	29.7	29.6	
ENT	۵۵	m bar	998.9	998.9	998.9	998.9	998.9	998.9	998.9	
	n	ram	2600	2400	2200	2000	1800	1600	1400	
ひかなに ひな エ る ごっか	m	mdoN	1387	1439	1420	1386	1334	1258	1151	
HA	م	ku .	378	362 .	327	2 90	252	211	169	
[pme	bar	11.8	12.2	12.1	11.8	11.3	10.7	9.8	
	ì	g/kw h	231	223	217	218	223	228	246	
FUEL	Q¢	nm) cycle	156.6	165.7	158.6	156.3	153.5	148.8	146.1	
	q m	kg/h	82.6	80.6	70.8	63.4°	56	48.3	43.5	
OIL	PH	•c	119	118.2	116.7	115.7	114.5	113.4	112.5	
	рн	bar	3.91	3.68	3.39	3.07	2.73	2.42	2.07	÷
W	10	•¢	90.7	90.9	90.98	92.1	91.2	90.89	90.7	·
¥41-max	7.	or.	94.2	94.4	94.3	94.33	94.4	94.55	94.5	
	- 91	•(29.39	30.16	30.23	30.01	29.95	29.7	29.59	
	p0 - p1	m bar	11.35	9.96	7.77	5.45	3.64	2.46	1.44	
im-z	12	•(153.33	144.4	129.87	113.88	97.6	82.58		٠
Ę	9.2	bar	1.224	1.173	1.083	.833	.634	.457	.298	
	72'	۰۲	102.3	100.477	·97.4	94.8	92.44	90.7	89.55	
	92-97	(a) p.e.								
	13	•¢	672.9	651.1	637	645.7	662	706.9	_738.7	
Ă	p 3	740	1.185	1.032	.329	.626	.440	.308	.198	
-INC DEXE	9 4	• (554.4	537	537	557	595.4	634.8	670	
7	94-90 Smoke	m bar Besch	38.17	28.8	17.35	7.47	2.96	.32	1.42	
BLOW	- BY	om ³ /mn			·		<u></u>			
				•	٠					

EN	IGIN		Type:	<u>.</u>	N°:			– Place	date:	:	•
		FL		RGE PER		ES		Refe	rence :		
·FU	EL :			OIL	type:	BRAKE type:					
Vol	nws	mass	:	kg/dm³	grade:	• .		·F	ull Load	d A t 100 1	Test Hrs
AMBI-	10	٠٢	30.8	31.1	29.7	31.1	30	.5	30.8	31.1	
ENT	ρQ	mbar	987.6	987.6	987.6	987.6	98	7.6	987.6	987.6	
	n	r.om	2600	2400	2200	2000	18	00	1600	1400	
Č F	n	Metim	1411	1442.8	1425.2	1398	13	52	1267	1162	•
THE THOUSEN	p	ku .	384.4	362.6	328.3	292.8	25	4.8	211.9	170.3	
<u>ک</u>	pme	bar	11.9	12.2	12.1	11.9	11	.5	10.7	9.86	
	Cs/bsfc	1 .	216	223.2	217.8	216.6	22	1.4	230.5	247.6	
FUEL	Q.c	nm) Cycle	157	166.2	176 .	156.1	15	4.7	150.7	148.7	
	q m	kg/h	82.8	80.9	71.2	63.31	56	.5	48.9	42.2	
OIL	РΉ	•¢	117.8	117.2	115.7	115	11	3.9	112.7	111.2	
	рн	bar	4.72	4.42	A.1	3.64	3.	14	2.67	2.2	
¥	r'e	۰۲	90.6	89.5	89.76	90.7	90	.5	90.2	90.1	
E.	15	•c	94.5	93.7	93.6	94.3	94	.27	94.14	94.3	
	11	٠	22.4	23.4	23.9	24.9	24	.9	26.2	26.3	
	p0 - p1	e par	13.3	11.9	9.5	7.2	5.	33	3.9	4.18	
X LET	12	٠٬	149.3	138.9	123.5	105.4	93	.1	78.5	65.3	•
Ē	9.2	bar	1.27	1.213	1.10	.869	-	63	.465	.301	
	12"	•¢	103.9	100.8	. 96.9	93.9	90	.5	88.3	87.06	
Ė	p2-p1	wpa									
	13	۰٤	667.1	637.1	622.4	633.3	66	1.7	696	729	
Ř	ρ3	921	1.23	1.083	.868	.659		69	.313	.199	
-INC DEXM	1 4	° C	496.2	486.7	.452	466.2	57		615.5	658.6	
	g4-p0 Sacke		36.9	25.12	15.3	6.00		27	.72	1.997	
		<u></u>					_	-닉		<u> </u>	
BLOW	BLOW - BY on /mn					الـــالــالــالــالــالــا					
						•	•	•	•		

E	<u>IIDI</u>		Type: ULL CHA	ARGE PERI	Nº:						
·FU	EL:	-INIT!		Fin					KE type:		
Va	lume	mass	5:	kg/dm³	rade:	Full Load At 200 Test Hours					
AMBI-	10	۰۲	33.0	33.2	32.5	34	32	.3	30.7	29.5	
ENT	0م	mbar	1006	1006	1006	1006	10	06	1006	1006	
	٥	P.am	2600	2400	2200	2000	18	00	1600	1400	
TWC+-OCT.	н	Me De	1385.8	1441.4	1432	1402	134	48	1273	1167.5	•
Ĥ	В	kw .	377.2	360.5	330	2 94	25	4	213.3	171.1	
٤	pme	bar	11.76	12.2	12.15	11.9	11	.4	10.8	9.91	
	ł	g/kwh	230.5	223.8	217.8	214.7	219	9.6	227.5	237	
FUEL	Q.c	nm} tycle	165.1	165.9	161	155.4	152	2.8	149.5	125.5	•
	q m	kg/h	87.03	80.7	71.8	63	55	.7	48.5	40.7	
OIL	ŧН	٥٤	118.2	117.8	116.5	115.2	114	4.1	112.8	111.2	•
	рн	bar	4.75	4.42	4.08	3.64	3.	15	2.67	2.19	
W	10	٥,	90.1	90.8	90.6	90.5	90	.4	90.2	90.04	
ER	15	•ε	93.7	94.4	94.2	94.1	94	.1	94.1	94.2	
·	+1	٧.	20.9	21.9	23.2	23.8	23	.5	24.6	24,25	
	c0 - p1	# bar	13.9	12.5	10.1	7.64	5.7	7	4.2	3.18	·
Ņ	Ŷ 2 .	٠٢	144.3	136.3	122.7	107.3	90	.9	76.5	63.11	
Ē	p 2	bar	1.25	1.21	1.061	.865	.66		.466	.302	
	12"	•(103.1	101.2	.97.6	93.8	90	.8	88.32	86.8	
	p2-p1	6 93					<u></u>				
	13	•¢	49.9	48.1	46.7	47.5	50.	. 1	53.4	56.3	
EXC	63	bar	1.04	1.05	.846	.643	.45	57	.321	.186	
-IVC > IXM	P 4	• (542	533	530.4	549.9	582	2	621.3	654.5	
Ť	94-90		47.2	36.02	20.2	8.34	2.9	91	.5	.55	
	Sacke Bosch										
BLOW	- BY	on ¹ /mn									
						•		٠.			

EN	VGI1		Type:	•	No:		Plac	e date:				
		FL	JLL CHA		FORMANC	ES	Re	ference :		· · · · · · · · · · · · · · · · · · ·		
·FU	EL :	·	,	OIL	type:		BR	BRAKE type:				
Vol	ume	mass	:	kg/dm³ C	rade:		Fu.	ll Load A	t 300 Hour	^S ,		
AMBI-	10	•:	29.9	29.4	28.5	24.6	23.5	23.5	23.5	,		
ENT	g 0	m bar	996.1	996.1	996.1	996.1	996.1	996.1	996.1			
Duna	n	r.øm	2600	2400	2203	2000	1801	1601	1400			
THE THE HOME	M.	RdaN .	1383.1	1430.6	1410.2	1373.6	1327.5	1244.8	1139.0	•		
KM 4	و	ku .	376.6	359.6	324:8	287.6	250.2	208.6	167.0			
<u> </u>	pme	bar	11.7	12.1	12.0	11.6	11.3	10.6	9.7			
	Es /bstc	g∕k⊌ h	233.0	225.7	219.0	220.2	226.9	234.8	250.6			
FUEL	Q.c	nm) cycle	199.6	200.0	191.2	187.6	186.6	181.1	177.1			
·	q m	kg/h	87.7	81.1	71.2	63.4	56.8	49.0	41.9			
OIL	tH	•¢	125.1	124.0	121.8	120.0	118.7	117.6	116.0			
	рн	bar	4.8	4.5	4.3	3.9	3.4	3.0	2.5			
WAT	ţe	•c	89.3	88.8	89.0	89.1	89.1	88.9	88.7			
Ř	.ts	•[93.1	92.7	92.6	92.5	92.6	92.7	92.6	·		
	*1	•(27.1	. 26.6	25.8	22.0	21.1	21.1	21.2			
	p0 - p1	mbar	15.1	13.6	11.1	8.5	5.9	4.7	3.6			
- Z-LET-	12	•¢	152.3	142.5	126.2	106.2	89.8	74.1	60.8	•		
Ŧ	g 2	bar	1.22	1.19	1.05	, 873	.676	.474	.310			
	12"	•c	103.7	101.1	97.0	92.5	89.2	86.9	85.3			
	p2-p2	• 54										
	13	•£	671.3	647.3	631.4	633.6	661.3	693.8	725.2			
一いに アエンベm	p3 _.	e C	1.18	· 1.07	.859	.649	.464	.311	.199			
- N	16.		554.2	539.4	534.9	547.4	580.7	619.0	654.5	N & N		
T	94-90 Saake	e bar Besch	45.6	36.7	21.8	9.76	4.16	1.64	.299			
]				
BLOW	- BY	on ³ /mn			<u></u>							
								•		4		

E	VG11		Type:		N°:			Place	dete:	:	
<u> </u>		Fl INIT!	JLL CHA	RGE PERI		ES		Refa	erence :		
FU	EL:			OIL	type:	type: BRAKE type:					
Vo	lume	mass	:	kg/dm ³ C	grade:				Load At	. 400 Tes	t Hours
AMBI-	10	•c	26.0	26.4	26.9	27.3	27	.6	27.7	28.3	
ENT	рО	m ber	1002.8	1002.8	1002.8	1002.8	10	02.8	1002.8	1002.8	
E	n	r.pm	1405	1600	1799	1996	22	02	2303		
\Z	н	maaN	1156.7	1248.9	1342.4	1375.0	14	11.6	1417		
Ĭ,	. 0	kw	169.6	209.2	253.0	287.9	32	5.2	341.2		
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	pme	bar	9.8	10.6	11.4	11.7	12	.0	12.0		
	Ks/bsfc	g/ku h	240.3	237.8	226.3	221.4	22	2.0	224.5		
FUEL	۵c	nm ³ cycle	171.4	184.2	188.1	188.8	19	4.0	197.1		-
	9 m	kg/h	40.7	49.8	57.2	63.7	72	.2	76.7		
	FH	۰۲	114.4	118.1	119.9	121.2	12	2.9	123.9		
OIL	рн	bar	2.6	3.0	3.4	3.9	4.	3	4.4		
₩ Ą	,.	•¢	88.8	90.6	90.8	90.6	90	.7	90.6		
ER	.15	•:	92.7	94.2	94.2	94.1	94	.1	94.1		
	11	•c	24.9	25.1	25.2	25.3	25	.3	25.7		
	p0 - p1	a bur	3.35	4.31	5.82	7.91	10	.51	11.82		
N.	1 2	•¢	65.31	78.8	94.7	110.3	12	5.9	135.0		
E	p≥	bar	.317	.474	.672	. 865	1.	06	1.14		
	12"	۰۲	85.21	88.71	91.23	94.24	-98	.21	100.21		
	p2-p7	# ber									
	13	•(729.4	701.4	665.8	639.9	63	2.2	637.0		
E	p3	921	.196	.305.	.445	.446	.8	57	.962		·
-INC D-IXA	14	٦٠	656.8	626.0	587.7	553.1	53	4.3	534.0		
7	p4-p0	# bar	.075	1.96	4.90	10.36	22	.43	29.27		
	Smake	Besch		<u></u>					<u> </u>		
BLOW .	- BY	cm ¹ /mn							·		·
			.*		•		•		• •		,

E	NGINE								
		and an extension of the second	PER	FORMANC	ES			· · · · · · · · · · · · · · · · · · ·	
			Part	Load At 1	400 RPM	·			
			- 85%	- 70%	60%	50%	40%	-25%	
амві-	to "C		25.32	25.58	25.72	25.93	26.04	26.52	
ENT	p0 mour		1001.2	1001.2	1001.2	1001.2	1001.2	1001,2	
P	n rom		1400	1400	1400	1400	1400	1400	
POR	Mean M		984.5	809.5	694.3	579.0	473.2	297.0	,
TENTROPISM	p k=		144.3	118.6	101.8	84.9	69.4	43.5	
. {	pme bar		8.4	6.9	5.9	4.9	4.0	2.5	
	Ks/Bsfc g/kiúh	f }	235.4	227.5	- 236.0	236.0	244.5	276.4	
FUEL	G.c nm²cycle		77.1	61.4	55.0	45.0	38.7	27.5	
	qm kg/h		33.9	27.0	241	20.0	17.0	12.1	
OIL	3H •C		111.3	106.3	107.2	106.1	104.6	103.2	
	pH tar		2.6	2.8	2.7.	2.8	2.8	2.8	
3 47-WQ	14 *6		87.7	86.6	90.6	90.5	91.7	92.8	
ΨQ	14 00	<u> </u>	90.7	88.9	92.6	92.2	93.0	93.9	
	11 *C		23.9	24.3	24.6	24.8	25.1	25.6	
١,	p0 - p: mbar		3.2	3.0	3.0	2.9	2.9	. 2.8	•
X LET	12 10		54.4	47.8	45.4	42.8	40.6	37.7	
7	p 2 bar		.46	.33	.27	.22	.17	.11	•
	p2-p2 mbar		83.5	82.1	85.4	85.6	85.9	87.3	
=				 [520, 2	400 7		404 5		
E	t3 °C		629.0	539.3	499.7	447.9	401.5	328.7	·
-INC PEXE	1 4 40		.154 576.9	501.8	.120 466.8	.107 419.4	.094 374.5	305.1	
U S T	94-90 mbar		3.46	2.21	1.74	1.02	.049	1.19	
L	Smoke Basch								
BLOW	- BY on /mn	`							
		•	•	-		•			
i		٠.						•	

E	NGINE	-	PF	REORMANO	FC			:	
				t Load At		PM			•
			- 85%	70%	60%	50%	40%	25%	
AMBI-	ta, rc		25.7	25.0	26.4	26.4	26.7	26.7	
ENT	BG mber		998.2	998.2	998.2	998.2	998.2	998.2	
THE STATE OF THE S	n rom		1600	1600	1600	1600	1600	1600	
TWO TOWE	M maan	·	1063.0	871.9	744.4	625.1	508.5	309.2	
Ĥ	p kv		178.1	146.1	124.8	104.7	85.2	51.8	
Z	pme ber		9.0	7.4	6.3	5.3 "	4.3	2.6	
	Es /bsfc g/k w	h	233.6	231.8	234.2	241.5	247.0	276.8	
FUEL	G (tam)	le	153.8	125.4	108.0	93.6	77.7	52.9	
	qm kg/s	<u>ال</u> ــــال	41.6	33.9	29,2	25.3	21.0.	14.3	
OIL	in .c		114.5	112.1	110.7	109.5	107.8	105.6	
	pH bar		3.1	3.1	3.2	3.3	3.3	3.4	·
Ad-ma	re °0		91.4	91.4	92.1	92.7	93.0	93.9	
É	12 et		94.3	93.7	93.9	94.2	94.3	94.4	
	P1 °C		24.1	24.5	25.0	25.2	25.4	25.7	
١.	p0 - p1 m but		4.0	3.7	3.5	3.5	3.3	3.2	7
LE	12 •		66.6	58.1	54.1	50.4	46.8	41.8	
Ť	g 2 bar		.73	.54	.42	.37	.30	.18	•
	12' °C		87.9	87.3	87.6	87.9	88.1	88.1	
	bs-bs wom								
۔	13 .0		631.8	564.9	522.6	478.0	431.2	347.8	
Ă	p3 tar		.250 568.8	.211 516.6	.190	.170	.150	.121	
-INC P EXM	p4-00 mbar		.074		480.8	442.8	400.8	323.1	
, .	Smoke Bosch			.025	.448	1.19	1.54	2.61	
BLOW	- BY dan /mr								
			·	لـــــا					
				-					

EN	4GIN	١E			•			•	1		
			ga 0.44550 Vin + - 01	PERFORMANCES							
				Part Load At 1800 RPM							
	•			- 85%	70%	60%	50%	40%	25%	-	
AMBI-	10	۰۲		27.8	28.0	28.3	28.7	28.6	28.8		
ENT	ρθ	m bar		998.2	998.2	998.2	998.2	998.2	998.2		
į	n	rpm		1800	1800	1800	1800	1800	1800		
Ŏ Ķ	Ħ	MoaN		1141.7	932.9	790.5	672.6	534.3	340.4		
TANDER BADERONAL	و ٠	kv		215.2	175.8	149.0	126.8	100.7	64.1		
1 2	pre	bar		9.7	7.9	6.7	5.7 ·	4.5	2.9	<u>. </u>	
	Es/Batc	g/k w h		225.7	226.9	237.8	237.2	245.8	281.0		
FUEL	S c	onm) Cycle		159.4	131.1	116.3	98.6	81.2	59.2		
Ŀ	q m	kg/h		48.5	39.9	35.4	30.0	24.7	18.0		
OIL	iН	٠٢		116.8	114.7	113.1	111.4	109.6	107.5		
	рн	tar		3.5	3.5	3.6	3.7	3.7	3.8		
W	10.	•:		90.6	91.6	92.2	92.6	92.7	93.4		
X41-max	19	•c		93.4	94.1	94.1	94.3	93.9	94.3		
	11	٠		26.0	26.2	26.8	27.3	27.3	27.8		
1.	po - p:	mber		5.3	4.7	4.6	4.3	4.0	3.9	·	
X LET	12	•(83.1	72.2	67.1	61.5	55.6	49.2		
Į Ę.	p 2	ber		1.1	.81	.69	.56	.43	.28	•	
	12	•¢		89.6	89.6	89.4	89.2	88.8	89.0		
	65-07	w par]		
	13	۰۲		620.8	569.4	536.0	493.2	442.9	370.3		
Ě	p3	bar		.382	.318	.283	.250	.214	-171		
HXC MIXE	7.4	•¢.		549.7	510.4	484.2	449.4	407.6	341.9		
Ĭ	94-90 Soula			3.5	2.2	1.7	1.0	.49	1.19		
<u></u>	Saake			 							
BLOW	- BY	om ³ /mn		<u> </u>][]		
					•	•	•	• • •	•		

PERFORMANCES Part Load At 2000 RPM	E	NGINE			:				:	•
Ref File File Ref Re				PER	FORMANC	ES				
APPBL 10 10 10 10 10 10 10 1			Í	Pa	art Load	At 2000	RPM			
Part Part				- 85%	- 70%	60%	50%	40%	25%	
		10 "		29.5	29.3	29.1	29.1	29.2	29.3	
	ENI	50 mb]	998.2	998.2	998.2	998.2	998.2	998.2	
	Dung	n rp	m	2000	2000	2000	2000	2000	2000	
	, F	M mo.	,N	1174.3	953.3	827.2	679.4	549.2	343.1	
	. FA	. B KA		245.9	199.6	173.2	142.3	115.0	71.8	
FUEL ac in in in in in in in i	· }	pme ba		10.0	8.1	7.0	5.8	4.7	2.9	
The color The		1	1 1	220.8	226.3	232.9	243.9	250.6	285.2	:
THE No. FUEL	ac mmg	ycle	160.7	133.7	119.5	102.6	85.2	60.7		
N				54.3	45.2	40.4	34.7	28.8	20.5	
PM Ear	011	rin •c		119.1	116.3	117.4	113.0	111.6	109.0	
1	OIL	рм са	or]	3.8	4.0	4.0	4.1	4.1	4.3	
Process Proc	W A	10 00		92.0	92.0	92.2	92.5	92.8	93.2	
	έΩ	15 00		94.9	94.3	94.1	94.2	94.0	94.1	
Part Part		91 °C		27.7	27.5	27.4	27.5	27.9	28.1	
12 15 93.3 91.7 91.2 90.6 90.0 89.4			ar	6.9	6.1	5.8	5.4	5.0	4.5	
12 15 15 15 15 15 15 15	N.	, 6 Ś . +C		98.3	85.4	79.2	71.7	64.7	54.9	
P2-P1 Paber	E	9 2 ba	-		1.1	.95	.78	.60	.39	•
13 16 600.7 559.1 531.3 496.0 452.5 379.8		92" *0		93.3	91.7	91.2	90.6	90.0	89.4	
		p2-p2 mb	y							
Shoke 805(h		13 •(600.7	559.1	531.3	496.0	452.5	379.8	
Shoke 805(h	EXCH	 			.440		.345	.291	.221	·
Shoke 805(h	A D S									
	Ť					4.3	3.6	3.1	1.1	
BLOW - BY m²/mn			=	<u></u>						
	BLOW	-BY on1/n		<u></u>	<u> </u>		<u> </u>			
					•	•				
			•			•				· ·

EN	PERFORMANCES									
Part Load At 2200 RPM										
				- 85%	- 70%	60%	50%	40%	25%	
AMBI-	10	•(27.5	27.7	27.9	28.0	28.8	28.2	
ENT	ρ0	m D4F		995.5	995.5	995.5	995.5	995.5	995.5	
Damo	n	rpm		2200	2200	2200	2200	2200	2200	
TENEST STATE	н	Main		1200	983.1	847.5	705.1	565.4	347.1	
H	• р	ky	ļ 	276.4	226.5	195.2	162.4	130.3	79.9	
2	pee	tar		10.2	8.3	7.2	6.0	4.8	2.9	
	ks/bstc	g.A. w h		223.8	226.9	232.3	242.7	253.6	295.6	
FUEL	G.c	nm} tycle		166.2	138.2	122.1	106.2	89.0	63.5	
	q m	kg/h	•	61.8	51.4	45,4	39.5	33.1	23.6	
OIL	PH	•¢		119.1	116.8	115.5	114.4	112.7	110.4	
	рн	bar		4.4	4.4	4.5	4.5	.46	4.7	·
X AT-WO	10	•(.		90.5	91.0	91.6	92.5	92.6	92.9	
E	75	۰۲		93.4	93.2	93.6	94.2	94.0	93.8	
	+1	•(25.8	26.2	26.4	26.7	27.0	27.3	
1.	p0 - p;	m bar		8.1	7.5	6.9	5.6	5.5	5.1	•
N LEF	12	۰۲		97.6	89.4	81.8	73.4	60.9	54.3	
Ę	9.2	bar	<u> </u>	1.4	1.2	1.0	.81	.54	.38	
	12	٠٤		93.5	92.9	92.7	91.8	90.7	90.3	
_	b5- b2	u par							<u> </u>	
	13	٠٢		552.2	526.6	497.7	460.3	393.6	340.6	
EX	р3	tur .		.594	.516	.453	.379	.287	.237	
LVCVIX	14	• (477.2	457.7	436.1	407.6	351.1	304.2	
17	94-90			9.3	6.7	5.3	4.4	2.7	1.3	
	Saute	aesch						<u></u>		
BLOW	-BY	Cra ¹ /mn								
						•		• • •		

E	NGINE							:	
	PERFORMANCES								
	Part Load At 2300 RPM								
	•		85%	70%	60%	50%	40%	25%	• •
AMBI-	10 °E		29.5	29.8	30.0	30.3	30.4	30,4	
ENT	p0 mber		995.5	995.5	995.5	995.5	995.5	995.5	
T.	n rpm		2300	2300	2300	2300	2300	2300	
VZP.TAG HAM	M mash		1209.6	993.9	848.4	709.2	573.6	355.3	
NA.	' p kw		291.3	239.4	204.4	170.8	138.1	85.5	,
1 8	pme bar		10.3	8.4	7.2	6.0	4.9	3.0	
	Es /Bsfc g/kw h	' 1 1 1 1	222.6	245.7	234.8	245.7	258.5	295.6	
FUEL	Gc nmg cycle		167.0	140.7	123.2	107.8	91.8	65.1	
Ŀ	qm kg/h	1	64.9	54.7	47.9	41.9	35.7	25.3	
OIL	PW °C		121.8	119.0	116.9	115.4	113.8	111.6	
	рн баг		4.4	4.5	4.5	4.6	4.6	4.8	
¥	10 %		91.8	91.8	92.0	92.3	92.5	92.9	
E R	. 95 °C		94.7	94.1	94.1	94.1	94.0	03.8	
	.et •c		27.4	27.8	28.1	28.6	28.9	29.2	
	p0-p1 mtar		10.4	9.2	8.4	7.7	7.0	6.1	•
Z LE	12 %		120.2	106.3	97.1	89.1	81.0	67.2	
Ŧ	p 2 ber		1.9	1.6	1.3	1.1	.93	.60	•
	12' °C		98.6	95.8	94.4	93.6	92.9	91.8	
<u> </u>	92-92 mbar	<u></u>							
٠	13 %		596.6	556.7	527.2	500.9	468.9	399.4	
Ă	p3 tar	 	794	.667 474.8	.578	.504	.435	.326	
HXI 4 DVI	94-90 mbar	 	20.0		453.7	454.4	410.3	354.2	
'	Smake Bosch	ļi	20.0	11.8	8.4	5.5	5.3	3.2	
BLOW	- BY on m		===						
		ــا لـــــــا	<u>-</u>	<u> </u>	<u> </u>				
	•			•		•	• • •	•	
,						•		•	

EN	IGIN	E			,	•	•	•		
	•			PERF	ORMANO	ES				
		•		Part Lo						
				- 85%	70%	60%	50%	40%	25%	•
AMBI-	to	•;		31.5	31.6	31.7	31.8	31.9	31.8	
ENT	g 0	m D4r		995.5	995.5	995.5	995.5	995.5	995.5	
	n	r.pm		2400	2400	2400	2400	2400	2400	
ひまない ひとばんしゅう	м	MD4N		1213.6	980.4	854.3	. 709.2	558.7	345.8	•
RMA	۵ .	kw.		305.0	246.4	214.5	178.2	140.4	86.9	
. Ę	pme	bar		10.3	8.3	7.3	6.0 ·	4.7	2.9	
	Ks /bsfc			226.3	232.3	237.2	247.5	263.4	303.5	
FUEL	B.c	am) Cycle		170.1	141.3	125.7	108.7	91.2	65.1	
	q m	kg/h		69.0	57.3	51.0	44.1	37.0	26.4	
OiL	PH	٠,٠		122.6	119.4	117.9	116.1	114.7	112.1	
	рн	bar		4.5	4.6	4.6	4.7	4.8	4.9	
W	re	•(91.6	91.6	91.9	92.1	92.5	92.7	
EX	75	•¢		94.7	93.8	94.0	93.8	93.8	93.7	
	11	•(29.2	29.7	29.8	30.0	30.5	30.6	
	p0 - p;	#I bar	·	11.6	10.0	9.2	8.3	7.6	7.4	
N	1 2	•(130.7	113.6	104.7	95.5	85.8	71.1	
Z E T	ρ2	bar		2.1	1.7	1.4	1.2	.99	.66	•
	12'	۰۲		100.3	97.2	95.8	94.7	93.9	92.5	
	92-97	m bar								
	13	۰۲		606.4	558.5	532.6	503.1	467.6	404.4	
EX	p3	bar		.890	.726	.644	.557	.472	.362	
EXCE ■ DVI	7.4	• €		508.4	473.3	454.7	433.6	407.9	356.0	
Ť	94-90			27.3	15.2	10.6	7.1	5.5	4.0	
	Sacre	Besch								
BLOW	- BY	om ¹ /mn]						
						•			•	•
			• • • • •				•		. ,	:

E	NGI	NE								
				PER	FORMANO	ES				
	Part Load At 2600 RPM									
		·		₋ 85%	70%	60%	50%	40%	25%	
AMBI-	10	•0		33.1	33.1	33.1	33.0	32.5	32.7	
ENT	ρO	m D41		995.5	995.5	995.5	995.5	995.5	995.5	
Page	n	rpm		2600	2600	2600	2600	2600	2600	
THAT HOUT YOU	H	mg am		1179.7	960.0	827.2	687.5	551.9	343.1	
HAN	-	ke		321.2	261.4	225.2	187.2	150.3	93.4	
1 6	pre	bar		10.0	8.2	7.0	5.8	4.7	2.9	
	1	q/ku h		233.5	234.8	243.3	253.0	272.8	321.1	
FUEL	G¢	nm) cycle		170.9	139.5	124.9	107.9	93.3	68.3	
	q m	kg/h		75.1	61.3	54.9	47.4	41.0	30.0	
OIL	řΉ	•(124.0	120.9	119.3	117.8	116.5	114.25	
	рн	par		4.7	4.8	4.8	4.9	4.9	5.1	
WATWO	re-	•¢		91.3	91.5	91.6	92.0	92.4	92.6	
E	15	•(94.4	93.9	93.8	93.7	93.8	93.7	
	*1	٠٢		30.7	30.7	31.1	31.3	30.7	31.5	
١.	p0 - p:	n bar		13.2	11.7	10.7	9.8	9.0	7.5	4.
N.	η 2 ρ 2	•¢		141.8	124.3	115.8	105.4	95.6	80.6	
Ę	p 2.	bar		2.2	1.9	1.6	1.4	1.2	.81	•
	12'	• [102.8	99.7	98.1	96.4	95.4	93.5	
	b5-b1	n bar								
	13	٠٤		623.2	566.7	537.8	506.6	476.4	418.8	
EX	p3	bar		1.02	.857	.755	.663	.582	.447	·
- INC DEEX	1.4	٠٢		516.7	474.8	453.1	430.6	407.9	362.2	
7	p4-p0	e cor		37.3	25.4	17.3	11.4	8.5	5.7	
	Sacre	Besch								
BLOW	- BY	om ¹ /mn			1					
				. •		•	-			
l									•	

DISTRIBUTION LIST

•	Copies
Commander US Army Tank-Automotive Command ATTN: DRSTA-TSL Warren, MI 48090	2
Commander Defense Technical Information Center Cameron Station 5010 Duke Street Alexandria, VA 22341	12
Commander US Army Tank-Automotive Command ATTN: DRSTA-RGE Warren, MI 48090	5

Best Available Copy